
Research Theme: Supervised Autonomy

• Autonomous Navigation in Unstructured 
Environments
• How can we enable robots to plan their own 

dynamically-feasible motions to successfully 
navigate in unstructured environments?

• Task-Level Autonomy
• How can we make robots more capable to 

complete complex tasks on their own?

• Human-Robot Collaboration
• How can we alleviate the cognitive workload 

placed on human supervisors working with a team 
of robots? 

• How can the robots interact with their human 
supervisors to provide feedback and incorporate 
new objectives?
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Overview

• Research Theme: Supervised Autonomy

• Navigation in Unstructured Environments

• Task-Level Autonomy

• Human-Robot Collaboration

• Highlighted Applications: Marine Robotics, Aerial Robotics

• Other Areas: Medical Robotics, Robot Manipulation, Cyber-Physical Systems

• Discussion
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Motion Planning in Unstructured Environments
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• Fundamental for 
autonomous robotics

• Numerous applications
• exploration
• transportation
• navigation
• search-and-rescue
• video games 
• medical robotics 
• …

Autonomous
Navigation

compute a collision-free 
and dynamically-feasible 
trajectory from the initial 
location to the goal



Motion Planning Poses Hard Problems
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Autonomous
Navigation

• High-dimensional continuous 
state spaces

• Obstacle-rich and 
unstructured environments

• Feasible motions constrained 
by underlying dynamics

• Often nonlinear, 
nonholonomic, and high-
dimensional

• PSPACE-complete: 
geometry, no dynamics

• Undecidable: 
with dynamics



Driving Research Questions

• How can we develop motion planners that are generally applicable?

• How can we achieve planning efficiency even for robots with nonlinear 
dynamics operating in unstructured, obstacle-rich environments?

• How can we improve the solution quality?

• What formal guarantees can we provide?
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Autonomous
Navigation



Sampling-based Motion Planning
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Autonomous
Navigation

Expand tree whose branches correspond to collision-free 
and dynamically-feasible motions

repeat until solution or runtime limit is reached:

• select state from which to expand the tree

• select target position 

• generate trajectory from selected state toward target

• add the collision-free portion as new branch to the tree

M P = (sinit, GOAL, SUCCESSOR) : search problem

• accounts for obstacles and dynamics
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Sampling-based Motion Planning
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Autonomous
Navigation

On difficult problems:

• Expansion frequently gets stuck 

• Progress slows down

• Exploration guided by limited information

• Difficult to discover new promising directions

RRT

KPIECEstate-of-the-art motion 
planners have difficulty solving 
these challenging problems



Our approach
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Autonomous
Navigation



Framework

• Pioneered framework to treat motion planning 
as a search problem in a hybrid space composed 
of discrete and continuous components 

17

Autonomous
Navigation

• High-level reasoning over discrete abstractions
• Provide simplified planning layer
• Guide search in the continuous space

• Probabilistic sampling to selectively explore the 
space of feasible motions

• Expand tree by adding collision-free and 
dynamically-feasible trajectories as branches

AI

Sampling-Based Motion Planning
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Autonomous
Navigation

• High-level reasoning over discrete abstractions
• Provide simplified planning layer
• Guide search in the continuous space
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AI

Sampling-Based Motion Planning

Simplified planning layer

• relaxed problem: no dynamics, point robot

• decomposition, adjacency graph

• shortest-path from each region to goal
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Autonomous
Navigation

• High-level reasoning over discrete abstractions
• Provide simplified planning layer
• Guide search in the continuous space

• Probabilistic sampling to selectively explore the 
space of feasible motions

• Expand tree by adding collision-free and 
dynamically-feasible trajectories as branches

AI

Sampling-Based Motion Planning

iterate until solution found or runtime limit is reached:

• select non-empty region with maximum weight 

• expand motion tree along shortest path

• update weights based on progress made



Framework: Enhancements/Improvements
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Autonomous
Navigation

abstractions via 
subdivisions
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Autonomous
Navigation

abstractions via 
roadmaps



Framework: Enhancements/Improvements
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Autonomous
Navigation

direct path 
superfacets



Framework: Enhancements/Improvements
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Autonomous
Navigation

clearance-
driven motion 
planning



Framework: Enhancements/Improvements
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Autonomous
Navigation

Leveraging ML

• Train model to 
predict problem 
difficulty

• Use predictions to 
guide motion tree 
expansion



Motion Planning in Unknown Environments
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Autonomous
Navigation



Summary of Motion-Planning Capabilities

28

Autonomous
Navigation

Selected Publications for
Motion Planning with Dynamics:

• IEEE Intl Conf on Automation Science 
and Engineering (CASE), 2023

• IEEE Intl Conf on Intelligent Robots and 
Systems (ICRA), 2022 

• IEEE Intl Conf on Automation Science 
and Engineering (CASE), 2022

• Robotica, 2018

• IEEE Robotics and Automation Letters 
(RAL), 2017

• IEEE Trans on Robotics (TRO), 2015

• Springer LNCS Towards Autonomous
Robotic Systems, 2015 (Best Student
Paper, my undergrad student)

• IEEE/RSJ Intl Conf on Intelligent Robots 
and Systems (IROS), 2014

• Ground, aerial, and marine robots

• High-dimensional nonlinear dynamics  

• Differential equations or physics-based engines

• Unstructured, obstacle-rich, and even unknown 
environments

• Any cost/risk metric

• Real-time planning

• Speedups of one to two orders of magnitude over 
related work 



Multi-Goal Motion Planning
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Autonomous
Navigation

Physical TSP

• visit each goal



Multi-Goal Motion Planning
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Autonomous
Navigation

Generalized
Physical TSP

• visit at least one 
goal from each 
group



Multi-Goal Motion Planning
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Autonomous
Navigation

Physical TSP with 
Limited Energy 
and Recharging 
Stations



Multi-Goal Motion Planning
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Autonomous
Navigation

Physical TSP with 
Time Windows

• visit each goal 
within specified 
timeframe



Multi-Goal Motion Planning

33

Autonomous
Navigation

Physical TSP with 
Time Windows, 
Pickups, 
Deliveries, and 
Limited-Load 
Capacity



Summary of Multi-Goal Motion Planning
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Autonomous
Navigation

• Physical Traveling Salesman Problem (TSP) 

• Generalized TSP

• Physical TSP with Limited Energy and Recharging Stations

• Physical TSP with Time Windows, Pickups, Deliveries, and Limited Load Capacity

[IEEE Intl Conf on Automation Science and Engineering (CASE), 2020]

[Springer LNCS Advances in AI, 2019]

[IEEE/RSJ Intl Conf on Intelligent Robots and Systems (IROS), 2018] 

[IEEE Robotics and Automation Letters, 2017] 

[Springer LNCS Towards Autonomous Robotic Systems, 2017]



Multi-Robot Motion Planning
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Autonomous
Navigation

computationally efficient, 
scaling up to tens of robots 
in 1-3s planning time

• [IEEE Intl Conf on Robotics and Automation (ICRA), 2021]

• [IEEE Robotics and Automation Letters, 2019]

• [J Artificial Intelligence Research, 2018]

• [Intl Joint Conf on AI, 2018]

• [Intl Conf on Planning and Scheduling, 2017 (Best Robotics Paper)]

• [IEEE Trans on Automated Science and Engineering (TASE), 2015]



Research Theme: Supervised Autonomy

• Autonomous Navigation in Unstructured 
Environments
• How can we enable robots to plan their own 

dynamically-feasible motions to successfully 
navigate in unstructured environments?

• Task-Level Autonomy
• How can we make robots more capable to 

complete complex tasks on their own?

• Human-Machine Collaboration
• How can we alleviate the cognitive workload 

placed on human supervisors working with a team 
of robots? 

• How can the robots interact with their human 
supervisors to provide feedback and incorporate 
new objectives?
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Missions via High-Level Languages
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Task-Level 
Autonomy

Natural Language

Formal Models

• propositions and predicates to express general statements: “safe;  reached area; measurement taken; object picked up”

• verbs to express actions relevant to the overall mission: “move to; inspect; avoid; track; pick up; release”

• logical connectives to combine multiple objectives: “and; or; not; if; if and only if”

• temporal connectives to express objectives along time spans: “next; always; eventually; until; time intervals”

• preconditions and postconditions to express effects of actions

• sentences formed by combining propositions/predicates/verbs with logical/temporal connectives

• Regular Languages (RL)

• Linear Temporal Logic (LTL)

• Signal Temporal Logic (STL)

• Planning-Domain Definition Languages (PDDL)

(always safe) and (eventually inspect areas 
A1, A2, . . . , An and (if damage detected then
take pictures or attempt repair)) and (next 
return to the base)

(for each package pi : pickup pi whose weight is wi from location Pi within
time [t start, t end] and deliver to location Di within time [T start, T end]) and do
not exceed max weight capacity C and reduce time to complete deliveries
and distance traveled



Combined Task/Mission and Motion Planning

38

• Framework tightly couples AI, Motion Planning, and Control
• Enables robots to complete high-level missions on their own
• Missions given by Regular Languages, Linear Temporal Logic, PDDL

[IEEE Trans on Automation Science and Engineering (TASE), 2022]
[IEEE Intl Conf on Automation Science and Engineering (CASE), 2021]
[IEEE Intl Conf on Robotics and Automation (ICRA), 2021]
[Robotica, 2017]
[J of Experimental and Theoretical Artificial Intelligence, 2016]
[AI Communications, 2015]  [IEEE/RSJ Intl Conf on Intelligent Robots 
and Systems (IROS), 2013]

Task-Level 
Autonomy



Autonomous Surface and Underwater Vehicles
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Pursuing research toward long-endurance missions

Adaptive mission

and motion

planning to

enhance

autonomy of

marine vehicles

[collaborations with NRL, Australian Defence Science and Technology Group

Marine
Robotics



Complex Missions via Linear Temporal Logic
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Marine
Robotics

Ocean Server Iver-2

• 55-inch length

• 5.8-inch diameter

Field Testing at NRL Chesapeake Bay Detachment
• Mission duration ≈ 2 hours

Enable AUV to avoid collisions 

and complete complex 

missions given by 

Linear Temporal Logic

Mission examples:

• Sequencing (goals in order)

• Coverage (goals in any

order)

• Partial ordering (some goals

before others)

• Group coverage (all goals in

a group before moving on to

the next group)

• …

[collaboration with NRL]

[IEEE Journal of Oceanic Engineering, 2016]  [NRL Review, 2015] [MTS/IEEE Oceans, 2015] [Springer LNCS Towards Autonomous Robotic Systems, 2014]



Autonomous Data Collection with Limited Time
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Marine
Robotics

Bluefin-21 Heavyweight AUV

• 18-hour endurance at 2.5 kts

• 314-inch length

• 21-inch diameter

• DVL & INS navigation

Field Testing at Boston Harbor

• Upper bound on mission duration is 42 minutes

• Each circle represents a target location

• Reward associated with each target

• Radius represents the distance required to sample data from target

• Enable AUV to reach

several locations within a

given time bound

• Each region of interest

has a reward associated

with it

• When not all regions can

be reached, maximize

overall reward

[collaboration with NRL]

[IEEE Robotics and Automation Letters, 2016]



Simultaneous Survey and Inspection with Communication Constraints for 
Teamed Autonomous Marine Vehicles
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Marine
Robotics

• Survey vehicle 

• moves along pre-planned path

• uses its on-board sensors to detect 

objects of interest

• acoustically communicates locations 

and rewards  to Inspection vehicle

• Inspection vehicle seeks to inspect 

detected objects, seeking to maximize 

total reward

• Survey and inspection vehicles must be in 

communication range at all times



Simultaneous Survey and Inspection with Communication Constraints for 
Teamed Autonomous Marine Vehicles
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Marine
Robotics

Field Experiments:
• Bantry Bay within 

Sydney Harbor 
• 2 Remus 100 AUVs

[collaboration with NRL and Australian Defence Science and Technology Group]

• How can the planner ensure that the Inspection vehicle always 
stays within the communication range of the Survey vehicle?

• How can the planner determine the order in which to inspect 
goals as they are detected and reported by the Survey vehicle 
in real time so as to increase the sum of the rewards?

• How do we plan efficiently to support real-time applications?

• [IEEE/RSJ Intl Conf on Intelligent Robots and Systems (IROS), 2023]
• [IEEE Trans Automation Science and Engineering (TASE), 2022]
• [IEEE Intl Conf Automation Science and Engineering (TASE), 2021 

(Finalist Best Application Paper)]
• [IEEE Intl Conf Robotics and Automation (ICRA), 2021]



Autonomous Inspection and Persistent Surveillance
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Aerial
Robotics

Search-and-find Camera-based Inspection of 3D Structures

[Springer LNCS Towards Autonomous Robotic Systems, 2017]

Inspection of Nonflat Terrains via
Microwave Remote Sensing (MRS)

[IEEE Intl Conf on Automated Science and Eng, 2021]

Tracking using MRS

[USNC-URSI National Radio Science, 2017]

Persistent Surveillance of Risk-Sensitive Areas
by a Team of UAVs [IEEE TASE 2014; TAROS 2014; Swarm Int 2013]
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Human-Machine Collaborations

46

• Interaction with human supervisors: Essential to
effectively handle challenges that arise when
operating in complex domains

• The robot team will adapt its plans based on
difficulties that it encounters or new information
that it gathers

• Human supervisors will also be able to modify the
overall mission or specify additional tasks based
on the feedback information provided by the
robot team



Enhancing Autonomy and Providing Assistance in Human-
Machine Cooperative Tasks

47

Medical Robotics

Ground/Aerial/Marine Robotics Sensor-based Manipulation

Cyber-Physical Systems

Da Vinci Surgical System, 
© Intuitive
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