Introduction to Robotics Configuration Space

Erion Plaku

Department of Electrical Engineering and Computer Science Catholic University of America

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a configuration space

 \leftarrow \Box \rightarrow

目目

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

K ロ > K @ > K 등 > K 등 > H 등 ...

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

K ロ > K @ > K 등 > K 등 > H 등 ...

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

Configuration (denoted by q)

a a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

s space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot
- Configuration Space or C-Space (denoted by Q)

s space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$ Collision-Free Configuration

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot
- Configuration Space or C-Space (denoted by Q)
	- **s** space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

Collision-Free Configuration

 \blacksquare q is collision free iff the robot does not collide with any obstacles when in configuration q , i.e., Robot $(q)\cap\left(\bigcup_{i=1}\texttt{Obstackle}_i\right)=\emptyset$

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot
- Configuration Space or C-Space (denoted by Q)
	- **s** space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

Collision-Free Configuration

 \blacksquare q is collision free iff the robot does not collide with any obstacles when in configuration q , i.e., Robot $(q)\cap\left(\bigcup_{i=1}\texttt{Obstackle}_i\right)=\emptyset$

Collision-Free Configuration Space

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot
- Configuration Space or C-Space (denoted by Q)
	- **s** space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

Collision-Free Configuration

 \blacksquare q is collision free iff the robot does not collide with any obstacles when in configuration q , i.e., Robot $(q)\cap\left(\bigcup_{i=1}\texttt{Obstackle}_i\right)=\emptyset$

Collision-Free Configuration Space

$$
\blacksquare \ Q_{\text{free}} = \{ q \in Q : q \text{ is collision free} \}
$$

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a configuration space

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

s space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

Collision-Free Configuration

 \blacksquare q is collision free iff the robot does not collide with any obstacles when in configuration q , i.e., Robot $(q)\cap\left(\bigcup_{i=1}\texttt{Obstackle}_i\right)=\emptyset$

Collision-Free Configuration Space

 $Q_{\text{free}} = \{q \in Q : q \text{ is collision free}\}\$

Path-Planning Problem: Compute collision-free path from q_{init} to q_{goal}

K ロ > K @ > K 로 > K 로 > - 로 - K 9 Q Q*

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a configuration space

- Configuration (denoted by q)
	- **a** a complete specification of the position of every point of the robot
- Configuration Space or C-Space (denoted by Q)
	- **s** space of all possible configurations of the robot, i.e., $Q = \{q : q \text{ is a configuration}\}\$

Collision-Free Configuration

 \blacksquare q is collision free iff the robot does not collide with any obstacles when in configuration q , i.e., Robot $(q)\cap\left(\bigcup_{i=1}\texttt{Obstackle}_i\right)=\emptyset$

Collision-Free Configuration Space

 $Q_{\text{free}} = \{q \in Q : q \text{ is collision free}\}\$

Path-Planning Problem: Compute collision-free path from q_{init} to q_{goal}

path : $[0, 1] \rightarrow Q_{free}$ is a continuous function with path $(0) = q_{init}$, path $(1) = q_{goal}$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

How can the points on the robot be expressed as a function of its configuration?

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

- How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$
- What is the configuration space Q ?

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

- How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$
- What is the configuration space Q ?

 $Q = \mathbb{R}^2$ (same as that of a point robot)

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

- How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$
- What is the configuration space Q ?

 $Q = \mathbb{R}^2$ (same as that of a point robot)

What is the free configuration space Q_{free} ? Is it the same as that of a point robot?

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

- How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$
- What is the configuration space Q ?

 $Q = \mathbb{R}^2$ (same as that of a point robot)

What is the free configuration space Q_{free} ? Is it the same as that of a point robot?

[Fig. courtesy of Latombe]

目

イロト イ押 トイヨ トイヨ トー

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (c_x, c_y) of the robot's center

- How can the points on the robot be expressed as a function of its configuration? $\text{Robot}(c_{\mathsf{x}},c_{\mathsf{y}})=\{({\mathsf{x}}, {\mathsf{y}}): ({\mathsf{x}}-c_{\mathsf{x}})^2+({\mathsf{y}}-c_{\mathsf{y}}) \leq r^2\}$
- What is the configuration space Q ?

 $Q = \mathbb{R}^2$ (same as that of a point robot)

What is the free configuration space Q_{free} ? Is it the same as that of a point robot?

[Fig. courtesy of Latombe]

目

イロメ イ部メ イヨメ イヨメー

How would you compute Q_{free} **?**

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

高山

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
\text{Robot}(c_x,c_y,\theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x,y) \in P \right\}
$$

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
\text{Robot}(c_x,c_y,\theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x,y) \in P \right\}
$$

What is the configuration space Q ?

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
Robot(c_x, c_y, \theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x, y) \in P \right\}
$$

What is the configuration space Q ?

 $Q = \mathbb{R}^2 \times S^1$ $(S^1$ refers to the unit circle)

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
\text{Robot}(c_x, c_y, \theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x, y) \in P \right\}
$$

What is the configuration space Q ? $Q = \mathbb{R}^2 \times S^1$ $(S^1$ refers to the unit circle)

What is the free configuration space Q_{free} ?

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
\text{Robot}(c_x, c_y, \theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x, y) \in P \right\}
$$

What is the configuration space Q ? $Q = \mathbb{R}^2 \times S^1$ $(S^1$ refers to the unit circle)

[\[F](#page-30-0)[ig.](#page-0-0) [cou](#page-59-0)[rtes](#page-0-0)[y o](#page-59-0)[f L](#page-0-0)[atom](#page-59-0)be]

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

 (c_x, c_y, θ) : position + orientation

How can the points on the robot be expressed as a function of its configuration?

$$
\text{Robot}(c_x, c_y, \theta) = \left\{ \left(\begin{array}{cc} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \\ 1 \end{array} \right) : (x, y) \in P \right\}
$$

What is the configuration space Q ? $Q = \mathbb{R}^2 \times S^1$ $(S^1$ refers to the unit circle)

H How would you compute Q_{free} ?

Taking the cros section of configuration space where robot is rotated at 45 degrees:

 \leftarrow \Box \rightarrow

 \mathbb{B} + 目

∍

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

K ロ > K @ > K 등 > K 등 > H 등 ...

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

$$
R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}
$$

$$
R_z(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

$$
R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}
$$

$$
R_z(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Euler angles, e.g., $q_{\text{rot}} = (\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

$$
R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}
$$

$$
R_z(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Euler angles, e.g., $q_{\text{rot}} = (\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_x(\gamma)R_y(\beta)R_z(\alpha)$

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

$$
R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}
$$

$$
R_z(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Euler angles, e.g., $q_{\text{rot}} = (\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_x(\gamma)R_y(\beta)R_z(\alpha)$ Axis-angle, e.g., $q_{\text{rot}} = (u_x, u_y, u_z, \theta)$

$$
R(u, \theta) = I \cos \theta + (\sin \theta)[u] \times + (1 - \cos \theta)u \otimes u
$$

\n
$$
[u] \times = \begin{pmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{pmatrix} u \otimes u = \begin{pmatrix} u_x u_x & u_x u_y & u_x u_z \\ u_y u_x & u_y u_y & u_y u_z \\ u_z u_x & u_z u_y & u_z u_z \end{pmatrix}
$$

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

 $(c_x, c_y, c_z, q_{\text{rot}})$: position + orientation

Orientation Representations

Rotation about x -axis, y -axis, z -axis

$$
R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}
$$

$$
R_z(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Euler angles, e.g., $q_{\text{rot}} = (\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_x(\gamma)R_y(\beta)R_z(\alpha)$ Axis-angle, e.g., $q_{\text{rot}} = (u_x, u_y, u_z, \theta)$

$$
R(u, \theta) = I \cos \theta + (\sin \theta)[u] \times + (1 - \cos \theta)u \otimes u
$$

\n
$$
[u] \times = \begin{pmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{pmatrix} u \otimes u = \begin{pmatrix} u_x u_x & u_x u_y & u_x u_z \\ u_y u_x & u_y u_y & u_y u_z \\ u_z u_x & u_z u_y & u_z u_z \end{pmatrix}
$$

Quaternions

K ロ > K @ > K 로 > K 로 > - 로 - K 9 Q Q*

manipulator with revolute joints:

How can the configuration be represented?

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

(ロ) (個) (目) (目) (目) 目 のQ(V)

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

How can the points on the robot be expressed as a function of its configuration?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ? n

 $Q = \overline{S^1 \times S^1} \dots \times \overline{S^1}$ $(\overline{S^1}$ refers to the unit circle)

K ロ > K @ > K 로 > K 로 > - 로 - K 9 Q Q*

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ? n

 $Q = \overline{S^1 \times S^1} \dots \times \overline{S^1}$ $(\overline{S^1}$ refers to the unit circle)

What is the free configuration space Q_{free} ?

 $\mathcal{A} \subseteq \mathbb{R}^{n \times n}$

目目

manipulator with revolute joints:

How can the configuration be represented?

 $(\theta_1, \theta_2, \ldots, \theta_n)$: vector of joint values

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ? n

 $Q = \overline{S^1 \times S^1} \dots \times \overline{S^1}$ $(\overline{S^1}$ refers to the unit circle)

What is the free configuration space Q_{free} ?

How would you compute Q_{free} ?

세분 위에 분 위에 분 ..

Two-link Path

Ξ, 重

←ロ ▶ → r同 \rightarrow ∍

Minkowski Sums

■ The Minkowski sum of two sets A and B, denoted by $A \oplus B$, is defined as

$$
A \oplus B = \{a+b : a \in A, b \in B\}
$$

The Minkowski difference of two sets A and B, denoted by $A \ominus B$ **, is defined as**

$$
A \ominus B = \{a - b : a \in A, b \in B\}
$$

How does it relate to path planning?

Recall the definition of the configuration-space obstacle

$$
Q_{\texttt{Obstack}} = \{q: q \in Q \text{ and } \texttt{Robot}(q) \cap \texttt{Obstack} \neq \emptyset\}
$$

(set of all robot configurations that collide with the obstacle)

Classical result shown by Lozano-Perez and Wesley 1979

for polygons and polyhedra : $Q_{\text{Obstacle}} = \text{Obstacle} \ominus \text{Robot}$

Properties of Minkowski Sums

Minkowski sum of two convex sets is convex

Minkowski sum of two convex polygons A and B with m and n vertices ...

- \blacksquare ... is a convex polygon with $m + n$ vertices
- ... vertices of $A \oplus B$ are "sums" of vertices of A and B
- ... $A \oplus B$ can be computed in linear time and space $O(n + m)$

let the sorted edges be $e_1, e_2, \ldots, e_{n+m}$

Algorithm

attach edges one after the other so that edge e_{i+1} starts where edge e_i ends

sort edges according to angle between

x-axis and edge normal

Minkowski sum for nonconvex polygons

- Decompose into convex polygons (e.g., triangles, trapezoids)
- **E** Compute the minkowski sums of the convex polygons and take their union
- Complexity: $O(n^2m^2)$ (4-th order polynomial)

3D Minkowski sums: [con[ve](#page-50-0)[x:](#page-48-0) $O(nm)$ $O(nm)$ $O(nm)$ $O(nm)$ $O(nm)$ complexity] [no[nco](#page-48-0)nvex: $O(n^3m^3)$ [co](#page-0-0)[mpl](#page-59-0)[exi](#page-0-0)[ty\]](#page-59-0)

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

... a key concept in path planning is the notion of a *configuration space*

- \blacksquare reduce robot to a point in the configuration space
- compute configuration-space obstacles (difficult to do in general)
- search for a path for the point robot in the free con[figu](#page-49-0)[ra](#page-51-0)[ti](#page-49-0)[on](#page-50-0) [s](#page-51-0)[pac](#page-0-0)[e](#page-59-0)

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

■ Topology is the "intrinsic character" of a space

ミー

イロメ イ部メ イヨメ イヨメー

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)

K ロ > K @ > K 등 > K 등 > H 등 ...

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

 $f: X \rightarrow Y$ is called a homeomorphism iff

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of $f)$ is continuous

K ロ > K 何 > K 君 > K 君 > 「君」 の Q ⊙

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

 $f: X \rightarrow Y$ is called a homeomorphism iff

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of $f)$ is continuous

examples of homeomorphisms: [disc to square]; $[(-1, 1)$ to $\mathbb{R}]$

X is diffeomorphic to Y iff exists $f : X \rightarrow Y$ such that

F is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

 $f: X \rightarrow Y$ is called a homeomorphism iff

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of $f)$ is continuous

examples of homeomorphisms: [disc to square]; $[(-1,1)$ to $\mathbb{R}]$

X is diffeomorphic to Y iff exists $f : X \rightarrow Y$ such that

F is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

K ロ > K 何 > K 君 > K 君 > 「君」 の Q ⊙

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

 $f: X \rightarrow Y$ is called a homeomorphism iff

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of $f)$ is continuous

examples of homeomorphisms: [disc to square]; $[(-1,1)$ to $\mathbb{R}]$

X is diffeomorphic to Y iff exists $f : X \rightarrow Y$ such that

F is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

An *n*-dimensional configuration space Q is a *manifold* if it locally looks like \mathbb{R}^n , i.e., every $q \in Q$ has a neighborhood homeomorphic to \mathbb{R}^n

Why study it?

- Extend results from one configuration space to another
- **Design specialized algorithms that take advantage of certain topologies**

What about the topology?

- **Topology is the "intrinsic character" of a space**
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures — if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

 $f: X \rightarrow Y$ is called a homeomorphism iff

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of $f)$ is continuous

examples of homeomorphisms: [disc to square]; $[(-1,1)$ to $\mathbb{R}]$

X is diffeomorphic to Y iff exists $f : X \rightarrow Y$ such that

F is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

- An *n*-dimensional configuration space Q is a *manifold* if it locally looks like \mathbb{R}^n , i.e., every $q \in Q$ has a neighborhood homeomorphic to \mathbb{R}^n
- A manifold is path-connected if there is a path between [any](#page-57-0) [tw](#page-59-0)[o](#page-58-0) [p](#page-51-0)o[in](#page-59-0)[ts](#page-0-0) \mathbb{B} is a \mathbb{B} is a \mathbb{B}

 \equiv

2D Manifolds

重

イロト イ部 トイモト イモトー