
Introduction to Robotics
Configuration Space

Erion Plaku

Department of Electrical Engineering and Computer Science
Catholic University of America

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}

Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}

Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in
configuration q, i.e., Robot(q) ∩

(⋃
i=1 Obstaclei

)
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1]→ Qfree is a continuous function with path(0) = qinit, path(1) = qgoal

Erion Plaku (Robotics) 2

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}
What is the configuration space Q?

Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?

Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?

Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?
as the two-dimensional position (cx , cy) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?
Robot(cx , cy) = {(x , y) : (x − cx)2 + (y − cy) ≤ r 2}

What is the configuration space Q?
Q = R2 (same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?
Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 3

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

(cx , cy , θ): position + orientation
How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?
Q = R2 × S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?
(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

 cos θ − sin θ cx

sin θ cos θ cy
0 0 1

 x
y
1

 : (x , y) ∈ P

What is the configuration space Q?

Q = R2 × S1 (S1 refers to the unit circle)
What is the free configuration space Qfree?

[Fig. courtesy of Latombe]How would you compute Qfree?

Erion Plaku (Robotics) 4

Examples of Configuration Spaces

Taking the cros section of configuration space where robot is rotated at 45 degrees:

[Fig. courtesy of Choset, Dodds, Manocha]

Erion Plaku (Robotics) 5

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?

(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is

Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)

Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

How can the configuration be represented?
(cx , cy , cz , qrot): position + orientation

Orientation Representations

Rotation about x-axis, y -axis, z-axis

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Euler angles, e.g., qrot = (α, β, γ) (yaw-pitch-roll), so rotation is Rx(γ)Ry (β)Rz(α)
Axis-angle, e.g., qrot = (ux , uy , uz , θ)

R(u, θ) = I cos θ + (sin θ)[u]× + (1− cos θ)u ⊗ u

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 u ⊗ u =

 uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

Quaternions

Erion Plaku (Robotics) 6

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?

(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?

forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?
(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?
forward kinematics (more later in the course)

What is the configuration space Q?

Q =

n︷ ︸︸ ︷
S1 × S1 . . .× S1 (S1 refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ
1

How would you compute Qfree?

Erion Plaku (Robotics) 7

Examples of Configuration Spaces

Two-link Path

Courtesy of Ken Goldberg

Erion Plaku (Robotics) 8

Minkowski Sums

The Minkowski sum of two sets A and B, denoted by A⊕ B, is defined as

A⊕ B = {a + b : a ∈ A, b ∈ B}
The Minkowski difference of two sets A and B, denoted by A	 B, is defined as

A	 B = {a− b : a ∈ A, b ∈ B}
How does it relate to path planning?

Recall the definition of the configuration-space obstacle

QObstacle = {q : q ∈ Q and Robot(q) ∩ Obstacle 6= ∅}
(set of all robot configurations that collide with the obstacle)
Classical result shown by Lozano-Perez and Wesley 1979

for polygons and polyhedra : QObstacle = Obstacle	 Robot

⊖ =

QObstaleObstale Robot
[Fig. courtesy of Manocha]

Erion Plaku (Robotics) 9

Properties of Minkowski Sums

Minkowski sum of two convex sets is convex
Minkowski sum of two convex polygons A and B with m and n vertices . . .

. . . is a convex polygon with m + n vertices

. . . vertices of A⊕ B are “sums” of vertices of A and B

. . . A⊕ B can be computed in linear time and space O(n + m)

[Fig. courtesy of Manocha]

Algorithm

sort edges according to angle between
x-axis and edge normal

let the sorted edges be e1, e2, . . . , en+m

attach edges one after the other so that
edge ei+1 starts where edge ei ends

Minkowski sum for nonconvex polygons
Decompose into convex polygons (e.g., triangles, trapezoids)
Compute the minkowski sums of the convex polygons and take their union
Complexity: O(n2m2) (4-th order polynomial)

3D Minkowski sums: [convex: O(nm) complexity] [nonconvex: O(n3m3) complexity]

Erion Plaku (Robotics) 10

Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

reduce robot to a point in the configuration space

compute configuration-space obstacles (difficult to do in general)

search for a path for the point robot in the free configuration space

Erion Plaku (Robotics) 11

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape “continuously” without
tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)
f is continuous
f −1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [(−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1 are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn, i.e.,
every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points

Erion Plaku (Robotics) 12

2D Manifolds

[Fig. courtesy of Choset, Dodds, Manocha]

Erion Plaku (Robotics) 13

