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Path Planning: From Point Robots to Robots with Geometric Shapes

m We have seen path-planning algorithms when a robot is a point

m How can we plan a collision-free path when the robot has a geometric shape?
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... a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)
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m space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

m g is collision free iff the robot does not collide with any obstacles when in
configuration g, i.e., Robot(g) N (UJ,_, Obstacle;) =0

Collision-Free Configuration Space
B Qree = {q € Q : q is collision free}
Path-Planning Problem: Compute collision-free path from ginit to ggoar

m path : [0,1] — Qfee is a continuous function with path(0) = @init, path(1) = ggoas
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Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:
m How can the configuration be represented?
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Examples of Configuration Spaces

Taking the cros section of configuration space where robot is rotated at 45 degrees:

R
Y l 45 degrees
P

X

[Fig. courtesy of Choset, Dodds, Manocha]
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Examples of Configuration Spaces

Two-link Path

=1l

Courtesy of Ken Goldberg
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Minkowski Sums

m The Minkowski sum of two sets A and B, denoted by A@® B, is defined as
A®B={a+b:acAbeB}

m The Minkowski difference of two sets A and B, denoted by A& B, is defined as
AcB={a—b:acAbec B}

How does it relate to path planning?
m Recall the definition of the configuration-space obstacle

Qobstacte = {q : g € Q and Robot(g) N Obstacle # 0}

(set of all robot configurations that collide with the obstacle)
m Classical result shown by Lozano-Perez and Wesley 1979

for polygons and polyhedra : Qubstacie = Obstacle © Robot

s B

Robot
Obstacle Qubstacle

[Fig. courtesy of Manocha]
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Properties of Minkowski Sums

m Minkowski sum of two convex sets is convex
m Minkowski sum of two convex polygons A and B with m and n vertices . ..

m ... is a convex polygon with m + n vertices
m ... vertices of A® B are “sums” of vertices of A and B
m ... A® B can be computed in linear time and space O(n + m)

Y.

I:I Algorithm

m sort edges according to angle between
x-axis and edge normal

\\\ m let the sorted edges be e1,e,...,€entm
! m attach edges one after the other so that
/ edge ej;1 starts where edge ¢; ends

[Fig. courtesy of Manocha]

m Minkowski sum for nonconvex polygons

m Decompose into convex polygons (e.g., triangles, trapezoids)
m Compute the minkowski sums of the convex polygons and take their union
m Complexity: O(n?m?) (4-th order polynomial)

m 3D Minkowski sums: [convex: O(nm) complexity] [nonconvex: O(n®m3) complexity]
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Path Planning: From Point Robots to Robots with Geometric Shapes

m We have seen path-planning algorithms when a robot is a point

m How can we plan a collision-free path when the robot has a geometric shape?

. a key concept in path planning is the notion of a configuration space

work space configuration space

reference point

m reduce robot to a point in the configuration space
m compute configuration-space obstacles (difficult to do in general)

m search for a path for the point robot in the free configuration space
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Topology of Configuration Spaces

Why study it?
m Extend results from one configuration space to another

m Design specialized algorithms that take advantage of certain topologies
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Topology of Configuration Spaces

Why study it?

m Extend results from one configuration space to another

m Design specialized algorithms that take advantage of certain topologies
What about the topology?

m Topology is the “intrinsic character” of a space

m Two spaces have different topologies if cutting and pasting is required to make them the
same (think of rubber figures — if we can stretch and reshape ‘“continuously” without
tearing, one into the other, they have the same topology)

m Mathematical mechanisms for talking about topology: homeomorphism /diffeomorphism
f: X — Y is called a homeomorphism iff

m f is a bijection (one-to-one and onto)
f is continuous
f~1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [ (—1,1) to R]
X is diffeomorphic to Y iff exists f : X — Y such that
m f is a homeomorphism where f and f~! are smooth (derivatives of all orders exist)
example of diffeomorphism: circle to ellipse

m An n-dimensional configuration space Q is a manifold if it locally looks like R", i.e.,
every g € Q has a neighborhood homeomorphic to R”
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tearing, one into the other, they have the same topology)

m Mathematical mechanisms for talking about topology: homeomorphism /diffeomorphism
f: X — Y is called a homeomorphism iff

m f is a bijection (one-to-one and onto)
f is continuous
f~1 (the inverse of f) is continuous

examples of homeomorphisms: [disc to square]; [ (—1,1) to R]
X is diffeomorphic to Y iff exists f : X — Y such that
m f is a homeomorphism where f and f~! are smooth (derivatives of all orders exist)
example of diffeomorphism: circle to ellipse

m An n-dimensional configuration space Q is a manifold if it locally looks like R", i.e.,
every g € Q has a neighborhood homeomorphic to R”

m A manifold is path-connected if there is a path between any two points
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2D Manifolds

real plane torus

projective plane mobius strip klein bottle

[Fig. courtesy of Choset, Dodds, Manochal]
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