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Motion Planning with Kinematics and Dynamics

Geometric constraints are generally not sufficient to adequately express robot
motions

Constraints on velocity, forces, torques, accelerations are needed for better
representations

[movie: geometric]

[movie: kinematic]

[movie: dynamics]

Erion Plaku (Robotics) 2



Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

g(q, q̇) on 0

where

g(q, q̇) is some function g : Q × Q̇ → R
on can be any of the symbols =, <,>,≤,≥

Example of point in plane

configuration: q = (x , y) ∈ R2

velocity: dq
dt

= q̇ = (ẋ , ẏ)

Examples of implicit velocity constraints

ẋ > 0

ẋ = 0

ẋ2 + ẏ 2 ≤ 1

x = ẋ
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ẋ = 0
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Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed, and are of the form

q̇ = f (q, u)

where

f (q, u) is some function f : Q × U → Q̇ that expresses a set of differential
equations

u is an input control
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Kinematics for Wheeled Systems – A Simple Car

Car configuration: q = (x , y , θ) ∈ R× S1

Body frame
Origin is at the center of rear axle
x-axis points along main axis of the car

Velocity (signed speed): s

Steering angle: φ

Express car motions as a set of
differential equations

ẋ = f1(x , y , θ, s, φ)

ẏ = f2(x , y , θ, s, φ)

θ̇ = f3(x , y , θ, s, φ)

How does the car move?

In a small time interval ∆t, the car must move
approximately in the direction that the rear wheels
are pointing

In the limit, as ∆t → 0, then dy
dx

= tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ and ẏ = s sin θ

What about θ̇?
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ẋ = f1(x , y , θ, s, φ)
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Kinematics for Wheeled Systems – A Simple Car

w : distance traveled by the car

dw = ρdθ
If the steering angle is fixed at φ, the car travels in
circular motion, in which the radius of the circle is ρ

ρ = L/ tanφ
where L is the distance from front to rear axles

Therefore

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

How should we control the car?

Setting the speed s, i.e., us = s

Setting the steering angle φ, i.e., uφ = φ

Putting it all together

Input controls: us (speed) and uφ (steering angle)

Equations of motions: ẋ = us cos θ ẏ = us sin θ θ̇ = us
L

tan uφ
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Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

Equations of motions: ẋ = us cos θ ẏ = us sin θ θ̇ = us
L

tan uφ

What are the bounds on the steering angle?

What are the bounds on the speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]

Can it rotate in place?

Standard simple car

us ∈ [−1, 1]

uφ ∈ (−φmax, φmax) for some φmax < π/2

Reeds-Shepp car

us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

uφ same as in the standard simple car

Dubins car

us ∈ {0, 1} (i.e., “park”, “forward”)

uφ same as in the standard simple car
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L

tan uφ

What are the bounds on the steering angle?

What are the bounds on the speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]

Can it rotate in place?

Standard simple car

us ∈ [−1, 1]

uφ ∈ (−φmax, φmax) for some φmax < π/2

Reeds-Shepp car

us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

uφ same as in the standard simple car

Dubins car

us ∈ {0, 1} (i.e., “park”, “forward”)

uφ same as in the standard simple car

Erion Plaku (Robotics) 7



Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)
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Kinematics for Wheeled Systems – Differential Drive

Input controls u = (u`, ur )
u`: angular velocity of left wheel

ur : angular velocity of right wheel

How does the robot move?

u` = ur ⇒ moves forward in the
direction the wheels are pointing

speed proportional to wheel radius r

u` = −ur ⇒ rotates clockwise because
wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between
the wheels
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Kinematics for Wheeled Systems – Differential Drive

Equations of motions
ẋ = r

2
(u` + ur ) cos θ

ẏ = r
2
(u` + ur ) sin θ

θ̇ = r
L

(ur − u`)
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Kinematics for Wheeled Systems – Differential Drive
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Can the differential drive move between any two configurations?
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Kinematics for Wheeled Systems – Unicycle

rider can set the pedaling speed and the
orientation of the wheel with respect to
the z-axis

r : wheel radius

σ: pedaling angular velocity

s = rσ: speed of unicycle

ω: rotational velocity in the xy plane
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Kinematics for Wheeled Systems – Unicycle

Equations of motions
ẋ = uσr cos θ

ẏ = uσr sin θ

θ̇ = uω

rider can set the pedaling speed and the
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the z-axis

r : wheel radius

σ: pedaling angular velocity

s = rσ: speed of unicycle

ω: rotational velocity in the xy plane
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Tractor Trailer

Equations of motions:
ẋ = s cos θ

ẏ = s sin θ

θ̇0 = s/L tanφ

θ̇1 = s/d1 sin(θ1 − θ0)

...

θ̇i = s/dj (Πi−1
j=1 cos(θj−1−θj )) sin(θi−1−θi )

Consider a simple car pulling k trailers
(similar to an airport luggage cart).

Each trailer is attached to rear axle of
body in front of it.

New parameter here is hitch length, di ,
the distance from the center of the rear
axle of trailer i to the point at which the
trailer is hitched to next body.

The car itself contributes R2 × S1 to C ,
and each trailer contributes an S1. So,
|C| = k + 1.

The configuration transition equation is
somewhat of an art to get right. The
one here is adapted from Murray, Sastry,
IEE Trans Autom Control, 1993.

[movie: strailer4]
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Each trailer is attached to rear axle of
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New parameter here is hitch length, di ,
the distance from the center of the rear
axle of trailer i to the point at which the
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The car itself contributes R2 × S1 to C ,
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|C| = k + 1.

The configuration transition equation is
somewhat of an art to get right. The
one here is adapted from Murray, Sastry,
IEE Trans Autom Control, 1993.

[movie: strailer4]

How about acceleration?
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Dynamical Systems

Involve acceleration q̈ in addition to velocity q̇ and configuration q

Implicit constraints
g(q̈, q̇, q) = 0

Parametric constraints
q̈ = f (q̇, q, u)
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Phase Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a phase vector, where

x1 = y

x2 = ẏ

Then
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

yes, if we also add the constraint x2 = ẋ1

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Erion Plaku (Robotics) 12
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ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

yes, if we also add the constraint x2 = ẋ1
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Extending Models by Adding Integrators

Suppose equations of motions are given as

ẋ = f (x , u)

Let n denote the dimension. Then

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui
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ẋ = f (x , u)

Let n denote the dimension. Then

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing ẋn+1 = u′i
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Putting it all together: Car

Kinematic (first-order) model

State s = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (us , uφ)

Translational velocity us ∈ R
Steering angle uφ ∈ R

Motion equations ṡ = f (s, u),
where

ṡ =

 ẋ
ẏ

θ̇

 =

 us cos θ
us sin θ

us
L

tan uφ



Dynamics (second-order) model

State s = (x , y , θ, s, φ)

Position (x , y) ∈ R2

Orientation θ ∈ S1

Translational velocity s ∈ R
Steering angle φ ∈ R

Control inputs u = (u1, u2)

Translational acceleration u1 ∈ R
Steering rotational velocity u2 ∈ R

Motion equations ṡ = f (s, u), where

ṡ =


ẋ
ẏ

θ̇
ṡ

φ̇

 =


s cos θ
s sin θ
s
L

tanφ
u1

u2

 or


s cos θ cosφ
s sin θ cosφ

s
L

sinφ
u1

u2


[movie: SCar]
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ṡ =


ẋ
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Putting it all together: Differential Drive

Kinematic (first-order) model

State s = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (u`, ur )

Angular velocities u`, ur ∈ R
Motion equations ṡ = f (s, u), where

ṡ =

 ẋ
ẏ

θ̇

 =

 r
2
(u` + ur ) cos θ

r
2
(u` + ur ) sin θ

r
L

(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, s`, sr )

Position (x , y) ∈ R2

Orientation θ ∈ S1

Angular velocities s`, sr ∈ R
Control inputs u = (u1, u2)

Angular acceleration for left wheel,
u1 ∈ R
Angular acceleration for right wheel,
u2 ∈ R

Motion equations ṡ = f (s, u), where

ṡ =


ẋ
ẏ

θ̇
ṡ`
ṡr

 =


r
2
(s` + sr ) cos θ

r
2
(s` + sr ) sin θ

r
L

(sr − s`)
u1

u2


[movie: SDDrive]
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ẏ

θ̇

 =

 r
2
(u` + ur ) cos θ

r
2
(u` + ur ) sin θ

r
L

(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, s`, sr )

Position (x , y) ∈ R2

Orientation θ ∈ S1

Angular velocities s`, sr ∈ R
Control inputs u = (u1, u2)

Angular acceleration for left wheel,
u1 ∈ R
Angular acceleration for right wheel,
u2 ∈ R

Motion equations ṡ = f (s, u), where
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Putting it all together: Unicycle

Kinematic (first-order) model

State s = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (uσ, uω)

Translational velocity uσ ∈ R
Rotational velocity uω ∈ R

Motion equations ṡ = f (s, u), where

ṡ =

 ẋ
ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Position (x , y) ∈ R2

Orientation θ ∈ S1

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translational acceleration u1 ∈ R
Rotational acceleration u2 ∈ R

Motion equations ṡ = f (s, u), where

ṡ =


ẋ
ẏ

θ̇
σ̇
ω̇

 =


σr cos θ
σr sin θ
ω
u1

u2
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ẋ
ẏ
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ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Position (x , y) ∈ R2

Orientation θ ∈ S1

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translational acceleration u1 ∈ R
Rotational acceleration u2 ∈ R

Motion equations ṡ = f (s, u), where
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Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

a starting state s0

an input control u

motion equations ṡ = f (s, u)

Let s(t) denote the state at time t. Then,

s(t) = s0 +

∫ h=t

h=0

f (s(h), u)dh

Computation can be carried out by

Closed-form integration when available or

Numerical integration
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Numerical Integration – Euler Method

Let ∆t denote a small time step. We would like to compute s(∆t) as

s(∆t) = s(0) +

∫ h=∆t

h=0

f (s(h), u)dh

Euler Approximation

f (s(t), u) = ṡ(t) =
ds(t)

dt
≈ s(∆t)− s(0)

∆t

Therefore,
s(∆t) ≈ s(0) + ∆t f (s(t), u)

For example, Euler integration of the kinematic model of unicycle yields:

s(∆t) ≈

 x0

y0

θ0

 + ∆t

 uσr cos θ
uσr sin θ

uω


Advantage: Simple and efficient

Disadvantage: Not very accurate (first-order approximation)
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Numerical Integration – Runge-Kutta Method

Let ∆t denote a small time step. We would like to compute s(∆t) as

s(∆t) = s(0) +

∫ h=∆t

h=0

f (s(h), u)dh

Fourth-order Runge-Kutta integration:

s(∆t) ≈ s(0) +
∆t

6
(w1 + w2 + w3 + w4)

where
w1 = f (s(0), u)

w2 = f (s(0) +
∆t

2
w1, u)

w3 = f (s(0) +
∆t

2
w2, u)

w4 = f (s(0) + ∆t w3, u)
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Motion-Planning Problem for Systems with Differential Constraints

Given

State space S

Control space U

Equations of motions as differential equations f : S × U → Ṡ

State-validity function valid : S → {true, false}, e.g, check collisions

Goal function goal : S → {true, false}
Initial state s0

Compute a control trajectory u : [0,T ]→ U such that the resulting state trajectory
s : [0,T ]→ S obtained by integration is valid and reaches the goal, i.e.,

s(t) = s0 +

∫ h=t

h=0

f (s(t), u(t))dh (1)

∀t ∈ [0,T ] : valid(s(t)) = true (2)

∃t ∈ [0,T ] : goal(s(t)) = true (3)
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Motion-Planning Methods for Systems with Differential Constraints

Decoupled approach

1 Compute a geometric solution path ignoring differential constraints

2 Transform the geometric path into a trajectory that satisfies the differential
constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning
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Sampling-based Motion Planning with Differential Constraints

Roadmap Approaches

0. Initialization
add sinit and sgoal to roadmap vertex set V

b

b

goal

init

1. Sampling
repeat several times

s ← StateSample()

if IsStateValid(s) = true

add s to roadmap vertex set V

b

b

goal

init

b b

b b
b

b

b

b

b
b

b

b

b
b

b
b

b

b

b

2. Connect Samples
for each pair of neighboring samples (sa, sb) ∈ V × V

λ← GenerateLocalTrajectory(sa, sb)

if IsTrajectoryValid(λ) = true

add (sa, sb) to roadmap edge set E

b
goal

init

b

b b

b

b

b

b
b

b

b

b
b

b

b

b

b
b

b

b

b

3. Graph Search
search graph (V ,E) for path from sinit to sgoal

goal

init

b

b b

b

b

b

b
b

b

b

b
b

b

b

b

b
b

b

b

b

b

Erion Plaku (Robotics) 22



Implementation of Roadmap Approaches with Differential Constraints

s ← StateSample()

generate random values for all the state components

IsStateValid(s)

place the robot in the configuration specified by the position and orientation
components of the state

check if the robot collides with the obstacles

check if velocity and other state components are within desired bounds

IsTrajectoryValid(λ)

use subdivision or incremental approach to check if intermediate states are valid

λ← GenerateLocalTrajectory(sa, sb)

linear interpolation between sa and sb won’t work as it does not respect underlying
differential constraints

need to find control function u : [0,T ]→ U such that trajectory obtained by
applying u to sa for T time units ends at sb

known as two-point boundary value problem

cannot always be solved analytically, and numerical solutions increase
computational cost
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Tree Approaches with Differential Constraints

RRT
1: T ← create tree rooted at sinit

2: while solution not found do
Bselect state from tree
3: srand ← StateSample()
4: snear ← nearest configuration in T to qrand according to distance ρ
Badd new branch to tree from selected configuration
5: λ← GenerateLocalTrajectory(snear, srand)
6: if IsSubTrajectoryValid(λ, 0, step) then
7: snew ← λ(step)
8: add configuration snew and edge (snear, snew) to T
Bcheck if a solution is found
9: if ρ(snew, sgoal) ≈ 0 then

10: return solution trajectory from root to snew

XStateSample(): random values for state components
Xρ : S × S → R≥0: distance metric between states
XIsSubTrajectoryValid(λ, 0, step): incremental approach

λ← GenerateLocalTrajectory(snear, srand)

will it not create the same two-boundary value problems as in PRM?

is it necessary to connect to srand?

would it suffice to just come close to srand?
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Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from snear to srand compute a trajectory that starts
at snear and extends toward srand

Approach 1 – extend according to random control

Sample random control u in U

Integrate equations of motions when applying u to snear for ∆t units of time, i.e.,

λ→ s(t) = snear +

∫ h=∆t

h=0

f (s(t), u)dh

Approach 2 – find the best-out-of-many random controls

1 for i = 1, . . . ,m do
1 ui ← sample random control in U

2 λi → s(t) = snear +
∫ h=∆t

h=0 f (s(t), ui )dh
3 di ← ρ(srand, λi (∆t))

2 return λi with minimum di

[movie: Traj]

Erion Plaku (Robotics) 25



Sampling-based Motion Planning with Physics-Based Simulations

Tree approaches require only the ability to simulate robot motions

Physics engines can be used to simulate robot motions

Physics engines provide greater simulation accuracy

Physics engines can take into account friction, gravity, and interactions of the robot
with objects in the evironment

[movie: PhysicsTricycle]

[movie: PhysicsBug]
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