Introduction to Robotics Motion Planning with Kinematics and Dynamics

Erion Plaku

Department of Electrical Engineering and Computer Science Catholic University of America

《ロ》 《御》 《君》 《君》 《君

 $\mathcal{O}\curvearrowright\mathcal{O}$

Motion Planning with Kinematics and Dynamics

- Geometric constraints are generally not sufficient to adequately express robot motions
- Constraints on velocity, forces, torques, accelerations are needed for better representations
- [movie: geometric]
- [movie: kinematic]
- [movie: dynamics]

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q, \dot{q}) \bowtie 0$

where

- **g** (g, \dot{q}) is some function $g: Q \times \dot{Q} \to \mathbb{R}$
- \blacksquare \bowtie can be any of the symbols $=$, \lt , \gt , \leq , \geq

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q, \dot{q}) \bowtie 0$

where

- g(q, q) is some function $g: Q \times Q \to \mathbb{R}$
- \blacksquare \bowtie can be any of the symbols =, <, >, \leq , \geq

Example of point in plane

- configuration: $q=(x,y)\in\mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q, \dot{q}) \bowtie 0$

where

- g(q, q) is some function $g: Q \times Q \to \mathbb{R}$
- \blacksquare \bowtie can be any of the symbols =, <, >, \leq , \geq

Example of point in plane

- configuration: $q=(x,y)\in\mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

Examples of implicit velocity constraints

$$
\begin{aligned}\n\bullet \quad \dot{x} > 0 \\
\bullet \quad \dot{x} &= 0 \\
\bullet \quad \dot{x}^2 + \dot{y}^2 &\le 1\n\end{aligned}
$$

$$
\blacksquare \, x = \dot{x}
$$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed, and are of the form

 $\dot{q} = f(q, u)$

where

- $f(q, u)$ is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations
- u is an input control

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- **Body frame**
	- Origin is at the center of rear axle
	- \blacksquare x-axis points along main axis of the car

 \leftarrow \Box \rightarrow

- Velocity (signed speed): s
- Steering angle: ϕ

How does the car move?

Express car motions as a set of differential equations

 $\dot{x} = f_1(x, y, \theta, s, \phi)$

$$
\blacksquare \ \dot{y} = f_2(x, y, \theta, s, \phi)
$$

$$
\blacksquare \dot{\theta} = f_3(x, y, \theta, s, \phi)
$$

 Ξ >

≘

Express car motions as a set of differential equations

 $\dot{x} = f_1(x, y, \theta, s, \phi)$

$$
\blacksquare \ \dot{y} = f_2(x, y, \theta, s, \phi)
$$

 $\dot{\theta} = f_3(x, y, \theta, s, \phi)$

Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- **Body frame**
	- Origin is at the center of rear axle
	- \blacksquare x-axis points along main axis of the car
- Velocity (signed speed): s
- Steering angle: ϕ

How does the car move?

■ In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\mathbf{v} = f_2(x, y, \theta, s, \phi)$
- $\dot{\theta} = f_3(x, y, \theta, s, \phi)$

Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- **Body frame**
	- Origin is at the center of rear axle
	- \blacksquare x-axis points along main axis of the car
- Velocity (signed speed): s
- Steering angle: ϕ

How does the car move?

- **■** In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin\theta + \dot{y}\cos\theta = 0$

 $\rightarrow \equiv$ >

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\mathbf{v} = f_2(x, y, \theta, s, \phi)$
- $\dot{\theta} = f_3(x, y, \theta, s, \phi)$

Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- **Body frame**
	- Origin is at the center of rear axle
	- \blacksquare x-axis points along main axis of the car
- Velocity (signed speed): s
- Steering angle: ϕ

How does the car move?

- **■** In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin\theta + \dot{y}\cos\theta = 0$
- Solution is of the form $\dot{x} = s \cos \theta$ and $\dot{y} = s \sin \theta$

イロト イ押 トイヨト イヨト

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\mathbf{v} = f_2(x, y, \theta, s, \phi)$
- $\dot{\theta} = f_3(x, y, \theta, s, \phi)$

Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- **Body frame**
	- Origin is at the center of rear axle
	- \blacksquare x-axis points along main axis of the car
- Velocity (signed speed): s
- Steering angle: ϕ

How does the car move?

- **■** In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin\theta + \dot{y}\cos\theta = 0$
- Solution is of the form $\dot{x} = s \cos \theta$ and $\dot{y} = s \sin \theta$

イロト イ部 トイモト イモト

What about θ **?**

- $w:$ distance traveled by the car
- \blacksquare dw = $\rho d\theta$

If the steering angle is fixed at ϕ , the car travels in circular motion, in which the radius of the circle is ρ

$$
\quad \text{ \rm \bf = \rm \bf 1/\tan \phi}
$$

where L is the distance from front to rear axles

 \leftarrow \Box \rightarrow

ЭÞ Ε

- $w:$ distance traveled by the car
- \blacksquare dw = $\rho d\theta$

If the steering angle is fixed at ϕ , the car travels in circular motion, in which the radius of the circle is ρ

$$
\quad \text{ \rm \bf = \rm \bf 1/\tan \phi}
$$

where L is the distance from front to rear axles

Therefore

$$
d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi
$$

 \leftarrow \Box \rightarrow

 \mathbb{B} + 目

How should we control the car?

- $w:$ distance traveled by the car
- \blacksquare dw = $\rho d\theta$

If the steering angle is fixed at ϕ , the car travels in circular motion, in which the radius of the circle is ρ

$$
\quad \text{ \rm \bf = \rm \bf 1/\tan \phi}
$$

where L is the distance from front to rear axles

Therefore

$$
d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi
$$

 \leftarrow \Box \rightarrow

 \rightarrow \equiv \rightarrow

 $=$ \rightarrow

≘

- $w:$ distance traveled by the car
- \blacksquare dw = $\rho d\theta$

If the steering angle is fixed at ϕ , the car travels in circular motion, in which the radius of the circle is ρ

 $\rho = L/\tan \phi$

where L is the distance from front to rear axles

Therefore

$$
d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi
$$

 \leftarrow \Box \rightarrow

How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$

- \blacksquare w: distance traveled by the car
- \blacksquare dw = $\rho d\theta$

If the steering angle is fixed at ϕ , the car travels in circular motion, in which the radius of the circle is ρ

 $\rho = L/\tan \phi$

where L is the distance from front to rear axles

Therefore

$$
d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi
$$

◂◻▸ ◂⁄ ▸

How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$

Putting it all together

- **Ionalle** Input controls: u_s (speed) and u_ϕ (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

化磨光化磨光

I Input controls: u_s (speed) and u_ϕ (steering angle)

Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

→ 伊 → → ミ → → ミ → → ミ → つんぐ

 \leftarrow \Box \rightarrow

- **I** Input controls: u_s (speed) and u_ϕ (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- **■** $u_s \in [-1, 1]$ and $u_\phi \in [-\pi/2, \pi/2]$
- Can it rotate in place?

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

- **If** Input controls: u_s (speed) and u_ϕ (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- **■** $u_s \in [-1, 1]$ and $u_\phi \in [-\pi/2, \pi/2]$
- Can it rotate in place?

Standard simple car

■
$$
u_s \in [-1, 1]
$$

■ $u_{\phi} \in (-\phi_{\text{max}}, \phi_{\text{max}})$ for some $\phi_{\text{max}} < \pi/2$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

If Input controls: u_s (speed) and u_ϕ (steering angle)

Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- **■** $u_s \in [-1, 1]$ and $u_\phi \in [-\pi/2, \pi/2]$
- Can it rotate in place?

Standard simple car

$$
\blacksquare \hspace{0.2cm} u_s \in [-1,1]
$$

$$
\blacksquare \hspace{0.2cm} u_{\phi} \in (-\phi_{\mathsf{max}}, \phi_{\mathsf{max}}) \hspace{0.2cm} \text{for some} \hspace{0.2cm} \phi_{\mathsf{max}} < \pi/2
$$

Reeds-Shepp car

- $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")
- u_{ϕ} same as in the standard simple car

K ロ > K 何 > K 君 > K 君 > 「君」 の Q ⊙

I Input controls: u_s (speed) and u_ϕ (steering angle)

Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- **■** $u_s \in [-1, 1]$ and $u_\phi \in [-\pi/2, \pi/2]$
- Can it rotate in place?

Standard simple car

 $u_s \in [-1, 1]$ $u_{\phi} \in (-\phi_{\text{max}}, \phi_{\text{max}})$ for some $\phi_{\text{max}} < \pi/2$

Reeds-Shepp car

■ $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")

 u_{ϕ} same as in the standard simple car

Dubins car

- $u_s \in \{0,1\}$ (i.e., "park", "forward")
- \blacksquare u_{ϕ} same as in the standard simple car

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... ⊙ Q Q ^

Input controls $u = (u_{\ell}, u_r)$

 \leftarrow \Box)

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

₿

Input controls $u = (u_{\ell}, u_r)$

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

 \leftarrow

₿

Input controls $u = (u_{\ell}, u_r)$

 \leftarrow

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel How does the robot move?
	- $u_\ell = u_r \Rightarrow$ moves forward in the direction the wheels are pointing speed proportional to wheel radius r

Erion Plaku (Robotics) 8

Input controls $u = (u_{\ell}, u_r)$

- $\Box u_{\ell}$: angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

■ $u_{\ell} = u_r \Rightarrow$ moves forward in the direction the wheels are pointing

speed proportional to wheel radius r

 $u_\ell = -u_r$ \Rightarrow rotates clockwise because wheels are turning in opposite directions

Input controls $u = (u_{\ell}, u_{r})$

- \mathbf{u}_ℓ : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

■ $u_{\ell} = u_r \Rightarrow$ moves forward in the direction the wheels are pointing

speed proportional to wheel radius r

■ $u_{\ell} = -u_{r} \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between the wheels

Equations of motions

 $\dot{x} = \frac{r}{2}(u_{\ell} + u_r) \cos \theta$

$$
\mathbf{u} \ \dot{y} = \frac{r}{2}(u_{\ell} + u_{r}) \sin \theta
$$

$$
\mathbf{u} \; \dot{\theta} = \frac{r}{L} (u_r - u_\ell)
$$

Input controls $u = (u_{\ell}, u_{\ell})$

 u_{ℓ} : angular velocity of left wheel

 u_r : angular velocity of right wheel How does the robot move?

- $u_\ell = u_r \Rightarrow$ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_{\ell} = -u_{r}$ \Rightarrow rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between the wheels

Equations of motions

 $\dot{x} = \frac{r}{2}(u_{\ell} + u_r) \cos \theta$

$$
\mathbf{v} \dot{y} = \frac{r}{2}(u_{\ell} + u_r) \sin \theta
$$

$$
\blacksquare \dot{\theta} = \frac{r}{L}(u_r - u_\ell)
$$

Different way of representing equations of motions

\n- \n
$$
u_{\omega} = \frac{u_{\ell} + u_r}{2}
$$
 (rotate)\n
\n- \n $u_{\psi} = \frac{u_r - u_{\ell}}{2}$ (transfer)\n
\n

Input controls $u = (u_{\ell}, u_{r})$

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

- $u_\ell = u_r \Rightarrow$ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_\ell = -u_r$ \Rightarrow rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between the wheels

Equations of motions
Figure $\ddot{x} = \frac{r}{r} (u_0 + u_1) c$

$$
\mathbf{u}\dot{x}=\tfrac{r}{2}(u_{\ell}+u_{r})\cos\theta
$$

$$
\mathbf{v} \dot{y} = \frac{r}{2}(u_{\ell} + u_{r}) \sin \theta
$$

$$
\mathbf{v} \dot{\theta} = \frac{r}{L}(u_{r} - u_{\ell})
$$

Different way of representing equations of motions

\n- $$
u_{\omega} = (u_{\ell} + u_r)/2
$$
 (rotate)
\n- $u_{\psi} = (u_r - u_{\ell})$ (translate)
\n

Input controls $u = (u_{\ell}, u_{\ell})$

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

- $u_{\ell} = u_r \Rightarrow$ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_{\ell} = -u_{r}$ \Rightarrow rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between the wheels

Then

$$
\begin{aligned}\n\blacksquare \; \dot{x} &= r u_{\omega} \cos \theta \\
\blacksquare \; \dot{y} &= r u_{\omega} \sin \theta \\
\blacksquare \; \dot{\theta} &= r u_{\psi} / L\n\end{aligned}
$$

Equations of motions

$$
\mathbf{u} \dot{x} = \frac{r}{2}(u_{\ell} + u_r) \cos \theta
$$

$$
\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta
$$

$$
\dot{\theta} = \frac{r}{L}(u_r - u_{\ell})
$$

Different way of representing equations of motions

\n- \n
$$
u_{\omega} = (u_{\ell} + u_r)/2
$$
 (rotate)\n
\n- \n $u_{\psi} = (u_r - u_{\ell})$ (translate)\n
\n

Input controls $u = (u_{\ell}, u_{\ell})$

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

- $u_{\ell} = u_r \Rightarrow$ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_{\ell} = -u_{r}$ \Rightarrow rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

origin at the center of the axle between the wheels

イロト イ部 トイモト イモトー

Then

$$
\begin{aligned}\n\blacksquare \; \dot{x} &= r u_{\omega} \cos \theta \\
\blacksquare \; \dot{y} &= r u_{\omega} \sin \theta \\
\blacksquare \; \dot{\theta} &= r u_{\psi} / L\n\end{aligned}
$$

Can the differential drive move between any two configurations?

E

Kinematics for Wheeled Systems – Unicycle

- rider can set the pedaling speed and the orientation of the wheel with respect to the z-axis
- $r:$ wheel radius
- \blacksquare σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle

 \leftarrow

 \blacksquare ω : rotational velocity in the xy plane

Kinematics for Wheeled Systems – Unicycle

- \blacksquare rider can set the pedaling speed and the orientation of the wheel with respect to the z-axis
- \blacksquare r: wheel radius
- \blacksquare σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle

 \leftarrow \Box \rightarrow

 \blacksquare ω : rotational velocity in the xy plane

 \mathbb{B} +

Tractor Trailer

Equations of motions:

- $\dot{x} = s \cos \theta$
- $\mathbf{y} = s \sin \theta$

$$
\blacksquare \, \dot{\theta_0} = \textit{s}/\textit{L} \tan \phi
$$

- $\theta_1 = s/d_1 \sin(\theta_1 \theta_0)$
- ... $\dot{\theta}_i = \mathsf{s}/d_j (\mathsf{\Pi}_{j=1}^{i-1}\cos(\theta_{j-1}\!-\!\theta_j))\sin(\theta_{i-1}\!-\!\theta_i)$
- **Consider a simple car pulling k trailers** (similar to an airport luggage cart).
- Each trailer is attached to rear axle of body in front of it.
- New parameter here is hitch length, d_i , the distance from the center of the rear axle of trailer i to the point at which the trailer is hitched to next body.
- The car itself contributes $\mathbb{R}^2 \times S^1$ to C , and each trailer contributes an $\mathcal{S}^1.$ So, $|\mathcal{C}| = k + 1.$
- The configuration transition equation is somewhat of an art to get right. The one here is adapted from Murray, Sastry, IEE Trans Autom Control, 1993.

イロト イ部 トイモト イモト

[movie: strailer4]

Tractor Trailer

Equations of motions:

- $\dot{x} = s \cos \theta$
- $\mathbf{y} = s \sin \theta$

$$
\blacksquare \, \dot{\theta_0} = \textit{s}/\textit{L} \tan \phi
$$

$$
\blacksquare \, \dot{\theta_1} = \mathsf{s}/d_1 \sin(\theta_1 - \theta_0)
$$

■ ...
\n■
$$
\dot{\theta}_i = s/d_j(\Pi_{j=1}^{i-1}\cos(\theta_{j-1}-\theta_j))\sin(\theta_{i-1}-\theta_i)
$$

- **Consider a simple car pulling k trailers** (similar to an airport luggage cart).
- Each trailer is attached to rear axle of body in front of it.
- New parameter here is hitch length, d_i , the distance from the center of the rear axle of trailer i to the point at which the trailer is hitched to next body.
- The car itself contributes $\mathbb{R}^2 \times S^1$ to C , and each trailer contributes an $\mathcal{S}^1.$ So, $|\mathcal{C}| = k + 1.$
- The configuration transition equation is somewhat of an art to get right. The one here is adapted from Murray, Sastry, IEE Trans Autom Control, 1993.

[movie: strailer4]

How about acceleration?

Dynamical Systems

- **Involve acceleration** \ddot{q} in addition to velocity \dot{q} and configuration q
- **Implicit constraints**

 $g(\ddot{q}, \dot{q}, q) = 0$

Parametric constraints

 $\ddot{q} = f(\dot{q}, q, u)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\ddot{y} - 3\dot{y} + y = 0 \tag{1}
$$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\ddot{y} - 3\dot{y} + y = 0 \tag{1}
$$

Let $x = (x_1, x_2)$ denote a phase vector, where

$$
\blacksquare \quad x_1 = y
$$
\n
$$
\blacksquare \quad x_2 = \dot{y}
$$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\ddot{y} - 3\dot{y} + y = 0 \tag{1}
$$

Let $x = (x_1, x_2)$ denote a phase vector, where

 $x_1 = y$ $x_2 = \dot{y}$

Then

$$
\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}
$$

Are (1) and (2) equivalent?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... ⊙ Q Q ^

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\ddot{y} - 3\dot{y} + y = 0 \tag{1}
$$

Let $x = (x_1, x_2)$ denote a phase vector, where

 $x_1 = y$ $x_2 = \dot{y}$

Then

$$
\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}
$$

Are (1) and (2) equivalent?

ves, if we also add the constraint $x_2 = \dot{x}_1$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\ddot{y} - 3\dot{y} + y = 0 \tag{1}
$$

Let $x = (x_1, x_2)$ denote a phase vector, where

 $x_1 = y$ $x_2 = \dot{y}$

Then

$$
\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}
$$

Are (1) and (2) equivalent?

ves, if we also add the constraint $x_2 = \dot{x}_1$ Thus, (1) can be rewritten as two constraints

$$
\bullet \quad x_1 = x_2
$$

$$
\bullet \quad x_2=3x_2-x_1
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... ⊙ Q Q ^

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then

1 Select an input control u_i

Suppose equations of motions are given as

$$
\dot{x}=f(x,u)
$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め Q Q →

Suppose equations of motions are given as

$$
\dot{x}=f(x,u)
$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- $\, {\bf g} \,$ Define a new input control $\, u'_i \,$ that takes the place of $\, u_i \,$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 ▶

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- $\, {\bf g} \,$ Define a new input control $\, u'_i \,$ that takes the place of $\, u_i \,$
- $\frac{1}{4}$ Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_{n+1}$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let *n* denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- $\, {\bf g} \,$ Define a new input control $\, u'_i \,$ that takes the place of $\, u_i \,$
- $\frac{1}{4}$ Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_{n+1}$

Procedure referred to as placing an integrator in front of u_i

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

Putting it all together: Car

Kinematic (first-order) model

Dynamics (second-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{l} \tan u_\phi \end{array} \right]
$$

目

イロト イ部 トイモト イモトー

Putting it all together: Car

Kinematic (first-order) model

State $s = (x, y, \theta)$ ■ Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array}\right] = \left[\begin{array}{c} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{l} \tan u_\phi \end{array}\right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\ \mathsf{s} = (\mathsf{x}, \mathsf{y}, \theta, \mathsf{s}, \phi)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- Translational velocity $s \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

≘

イロト イ押 トイヨ トイヨト

Putting it all together: Car

Kinematic (first-order) model

State $s = (x, y, \theta)$ ■ Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\ \mathsf{s} = (\mathsf{x}, \mathsf{y}, \theta, \mathsf{s}, \phi)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- Translational velocity $s \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translational acceleration $u_1 \in \mathbb{R}$
- Steering rotational velocity $u_2 \in \mathbb{R}$

イロト イ押 トイヨ トイヨト

≘

Kinematic (first-order) model

State $s = (x, y, \theta)$ ■ Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\ \mathsf{s} = (\mathsf{x}, \mathsf{y}, \theta, \mathsf{s}, \phi)
$$

Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

- Translational velocity $s \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

■ Translational acceleration $u_1 \in \mathbb{R}$

Steering rotational velocity $u_2 \in \mathbb{R}$

イロト イ部 トイモト イモトー

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\mathbf{s}} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \mathbf{s} \cos \theta \\ \mathbf{s} \sin \theta \\ \frac{\mathbf{s}}{L} \tan \phi \\ u_1 \\ u_2 \end{bmatrix}
$$

≘

Kinematic (first-order) model

State $s = (x, y, \theta)$ ■ Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\ \mathsf{s} = (\mathsf{x}, \mathsf{y}, \theta, \mathsf{s}, \phi)
$$

Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

- Translational velocity $s \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translational acceleration $u_1 \in \mathbb{R}$
- Steering rotational velocity $u_2 \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\mathbf{s}} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \mathbf{s} \cos \theta \\ \mathbf{s} \sin \theta \\ \frac{\mathbf{s}}{L} \tan \phi \\ u_1 \\ u_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{s} \cos \theta \cos \phi \\ \mathbf{s} \sin \theta \cos \phi \\ \frac{\mathbf{s}}{L} \sin \phi \\ u_1 \\ u_2 \end{bmatrix}
$$

[movie: SCar] イロト イ押ト イヨト イヨ

Putting it all together: Differential Drive

Kinematic (first-order) model

Dynamics (second-order) model

イロト イ部 トイモト イモトー

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_\ell, u_r)$

Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{2}(u_{r} - u_{\ell}) \end{bmatrix}
$$

造

Putting it all together: Differential Drive

Kinematic (first-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\ell}, u_{r})$

Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{2}(u_{r} - u_{\ell}) \end{bmatrix}
$$

Dynamics (second-order) model

$$
\mathsf{State}\; s = (x, y, \theta, s_\ell, s_r)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$

イロメ イ部メ イヨメ イヨメー

 \Rightarrow

Kinematic (first-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\ell}, u_{r})$

Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{2}(u_{r} - u_{\ell}) \end{bmatrix}
$$

Dynamics (second-order) model

$$
\mathsf{State}\; \mathsf{s} = (x, y, \theta, \mathsf{s}_{\ell}, \mathsf{s}_{r})
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$
- Control inputs $u = (u_1, u_2)$
	- Angular acceleration for left wheel, $u_1 \in \mathbb{R}$
	- Angular acceleration for right wheel, $u_2 \in \mathbb{R}$

イロメ イ部メ イヨメ イヨメー

Е.

Kinematic (first-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\ell}, u_{r})$

Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{2}(u_{r} - u_{\ell}) \end{bmatrix}
$$

Dynamics (second-order) model

$$
\mathsf{State}\; \mathsf{s} = (x, y, \theta, \mathsf{s}_{\ell}, \mathsf{s}_{r})
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$
- Control inputs $u = (u_1, u_2)$
	- Angular acceleration for left wheel, $u_1 \in \mathbb{R}$
	- Angular acceleration for right wheel, $u_2 \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\mathbf{s}}_r \end{array}\right] = \left[\begin{array}{c} \frac{r}{2}(\mathbf{s}_{\ell} + \mathbf{s}_{r})\cos\theta \\ \frac{r}{2}(\mathbf{s}_{\ell} + \mathbf{s}_{r})\sin\theta \\ \frac{r}{L}(\mathbf{s}_{r} - \mathbf{s}_{\ell}) \\ u_1 \\ u_2 \end{array}\right]
$$
\n(movic: SDDivel)

Putting it all together: Unicycle

Kinematic (first-order) model

Dynamics (second-order) model

イロト イ押ト イヨト イヨト

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- **Translational velocity** $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_{\sigma}r\cos\theta \\ u_{\sigma}r\sin\theta \\ u_{\omega} \end{array} \right]
$$

≘

Putting it all together: Unicycle

Kinematic (first-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_{\sigma}r\cos\theta \\ u_{\sigma}r\sin\theta \\ u_{\omega} \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\; \mathsf{s} = (x, y, \theta, \sigma, \omega)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- **Translational velocity** $\sigma \in \mathbb{R}$

イロト イ部 トイモト イモトー

Rotational velocity $\omega \in \mathbb{R}$

E.

Putting it all together: Unicycle

Kinematic (first-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
	- Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- **Translational velocity** $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_{\sigma}r\cos\theta \\ u_{\sigma}r\sin\theta \\ u_{\omega} \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\; s = (x, y, \theta, \sigma, \omega)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- **Translational velocity** $\sigma \in \mathbb{R}$
- Rotational velocity $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

■ Translational acceleration $u_1 \in \mathbb{R}$

イロト イ部 トイモト イモトー

Rotational acceleration $u_2 \in \mathbb{R}$

E.

Kinematic (first-order) model

State
$$
s = (x, y, \theta)
$$

■ Position $(x, y) \in \mathbb{R}^2$

Orientation $\theta \in \mathcal{S}^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- **Translational velocity** $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = \left[\begin{array}{c} u_{\sigma}r\cos\theta \\ u_{\sigma}r\sin\theta \\ u_{\omega} \end{array} \right]
$$

Dynamics (second-order) model

$$
\mathsf{State}\; s = (x, y, \theta, \sigma, \omega)
$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in \mathcal{S}^1$
- **Translational velocity** $\sigma \in \mathbb{R}$
- Rotational velocity $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translational acceleration $u_1 \in \mathbb{R}$
- Rotational acceleration $u_2 \in \mathbb{R}$ Motion equations $\dot{s} = f(s, u)$, where

$$
\dot{\mathbf{s}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\sigma} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \sigma r \cos \theta \\ \sigma r \sin \theta \\ \omega \\ u_1 \\ u_2 \end{bmatrix}
$$

イロト イ部 トイモト イモトー

 \Rightarrow

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s_0
- \blacksquare an input control \boldsymbol{u}
- **m** motion equations $\dot{s} = f(s, u)$

Let $s(t)$ denote the state at time t. Then,

$$
s(t)=s_0+\int_{h=0}^{h=t}f(s(h),u)dh
$$

≘

 $\langle \vert \bar{H} \vert \rangle$ \rightarrow \exists \rightarrow $\langle \vert \bar{H} \vert \rangle$

 \leftarrow \Box \rightarrow

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- \blacksquare a starting state s_0
- \blacksquare an input control \boldsymbol{u}
- **m** motion equations $\dot{s} = f(s, u)$

Let $s(t)$ denote the state at time t. Then,

$$
s(t)=s_0+\int_{h=0}^{h=t}f(s(h),u)dh
$$

Computation can be carried out by

- Closed-form integration when available or
- **Numerical integration**

≘

イタト イミト イモト

Numerical Integration – Euler Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$
s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh
$$

Euler Approximation

$$
f(s(t), u) = \dot{s}(t) = \frac{ds(t)}{dt} \approx \frac{s(\Delta t) - s(0)}{\Delta t}
$$

Therefore,

$$
s(\Delta t) \approx s(0) + \Delta t f(s(t), u)
$$

For example, Euler integration of the kinematic model of unicycle yields:

$$
s(\Delta t) \approx \left[\begin{array}{c} x_0 \\ y_0 \\ \theta_0 \end{array}\right] + \Delta t \left[\begin{array}{c} u_{\sigma}r\cos\theta \\ u_{\sigma}r\sin\theta \\ u_{\omega} \end{array}\right]
$$

- Advantage: Simple and efficient
- Disadvantage: Not very accurate (first-order approximation)

K ロ > K @ > K 등 > K 등 > H 등 ...

Numerical Integration – Runge-Kutta Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$
s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh
$$

Fourth-order Runge-Kutta integration:

$$
s(\Delta t) \approx s(0) + \frac{\Delta t}{6} (w_1 + w_2 + w_3 + w_4)
$$

where

$$
w_1 = f(s(0), u)
$$

\n
$$
w_2 = f(s(0) + \frac{\Delta t}{2} w_1, u)
$$

\n
$$
w_3 = f(s(0) + \frac{\Delta t}{2} w_2, u)
$$

\n
$$
w_4 = f(s(0) + \Delta t w_3, u)
$$

ミー

イロメ イ団メ イモメ イモメー

Given

- \blacksquare State space S
- Control space U
- Equations of motions as differential equations $f : S \times U \rightarrow \dot{S}$
- State-validity function VALID : $S \rightarrow \{true, false\}$, e.g, check collisions
- Goal function $GOAL : S \rightarrow \{true, false\}$
- \blacksquare Initial state so

Compute a control trajectory $u : [0, T] \rightarrow U$ such that the resulting state trajectory $s : [0, T] \rightarrow S$ obtained by integration is valid and reaches the goal, i.e.,

$$
s(t) = s_0 + \int_{h=0}^{h=t} f(s(t), u(t))dh \qquad (1)
$$

- $\forall t \in [0, T] : \text{VALID}(s(t)) = \text{true}$ (2)
- $\exists t \in [0, T] : \text{GOAL}(s(t)) = \text{true}$ (3)

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 ▶

Motion-Planning Methods for Systems with Differential Constraints

Decoupled approach

- **1** Compute a geometric solution path ignoring differential constraints
- **2** Transform the geometric path into a trajectory that satisfies the differential constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning

K ロ > K @ > K 끝 > K 끝 > → 말 …

Roadmap Approaches

0. Initialization add s_{init} and s_{goal} to roadmap vertex set V

1. Sampling

repeat several times

 $s \leftarrow$ STATESAMPLE() if $\text{ISSTATEVALID}(s) = \text{true}$ add s to roadmap vertex set V

2. Connect Samples

for each pair of neighboring samples $(s_a, s_b) \in V \times V$

 $\lambda \leftarrow$ GENERATELOCALTRAJECTORY(s_a, s_b) if IsTRAJECTORYVALID (λ) = true add (s_a, s_b) to roadmap edge set E

3. Graph Search

search graph (V, E) for path from s_{init} to s_{goal}

← r=P

 \leftarrow \Box \rightarrow

- $s \leftarrow$ STATESAMPLE()
	- generate random values for all the state components
- $\text{ISSTATEVALID}(s)$
	- **place the robot in the configuration specified by the position and orientation** components of the state
	- check if the robot collides with the obstacles
- **n** check if velocity and other state components are within desired bounds ISTRAJECTORYVALID (λ)
	- use subdivision or incremental approach to check if intermediate states are valid
- $\lambda \leftarrow$ GENERATELOCALTRAJECTORY (s_a, s_b)
	- **I** linear interpolation between s_a and s_b won't work as it does not respect underlying differential constraints
	- need to find control function $u : [0, T] \rightarrow U$ such that trajectory obtained by applying u to s_a for T time units ends at s_b
	- known as two-point boundary value problem
	- cannot always be solved analytically, and numerical solutions increase computational cost

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K 9 Q Q

Tree Approaches with Differential Constraints

RRT

- 1: $\mathcal{T} \leftarrow$ create tree rooted at s_{init}
- 2: while solution not found do

\triangleright select state from tree

- 3: $s_{\text{rand}} \leftarrow$ STATESAMPLE()
- 4: $s_{\text{near}} \leftarrow$ nearest configuration in T to q_{rand} according to distance ρ

```
\triangleright add new branch to tree from selected configuration
```
- 5: $\lambda \leftarrow$ GENERATELOCALTRAJECTORY($s_{\text{near}}, s_{\text{rand}}$)
6: if ISSUBTRAJECTORYVALID(λ , 0, step) then
- 6: if ISSUBTRAJECTORYVALID(λ , 0, step) then
7. $\epsilon_{\text{new}} \leftarrow \lambda(\text{sten})$
- 7: $s_{\text{new}} \leftarrow \lambda(\text{step})$
8: add configuration
- add configuration s_{new} and edge ($s_{\text{near}}, s_{\text{new}}$) to \mathcal{T}

\triangleright check if a solution is found
9: **if** $\rho(s_{\text{new}}, s_{\text{real}}) \approx 0$

- 9: if $\rho(\mathbf{s}_{\text{new}}, \mathbf{s}_{\text{goal}}) \approx 0$ then
10: **if is return** solution trajectors
- return solution trajectory from root to s_{new}

 $\sqrt{\text{STATE SAMPLE}}()$: random values for state components $\checkmark \rho : \mathcal{S} \times \mathcal{S} \to \mathbb{R}^{\geq 0}$: distance metric between states $\sqrt{\text{ISSUBTRAJECTORY} \lambda}$ LID $(\lambda, 0, \text{step})$: incremental approach

 $\lambda \leftarrow$ GENERATELOCALTRAJECTORY $(s_{\text{near}}, s_{\text{rand}})$

- will it not create the same two-boundary value problems as in PRM?
- is it necessary to connect to s_{rand} ?
- would it suffice to just come close to s_{rand} ?

目

イロト イ部 トイモト イモトー

Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from s_{near} to s_{rand} compute a trajectory that starts at s_{near} and extends toward s_{rand}

Approach 1 – extend according to random control

- Sample random control u in U
- Integrate equations of motions when applying u to snear for Δt units of time, i.e.,

$$
\lambda \to s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u) dh
$$

Approach 2 – find the best-out-of-many random controls

1 for
$$
i = 1, ..., m
$$
 do
\n**2** $u_i \leftarrow$ sample random control in U
\n**3** $\lambda_i \rightarrow s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u_i) dh$
\n**5** $d_i \leftarrow \rho(s_{\text{rand}}, \lambda_i(\Delta t))$

2 return λ_i with minimum di

[movie: Traj]

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경 ○

Sampling-based Motion Planning with Physics-Based Simulations

Tree approaches require only the ability to simulate robot motions

- **Physics engines can be used to simulate robot motions**
- **Physics engines provide greater simulation accuracy**
- Physics engines can take into account friction, gravity, and interactions of the robot with objects in the evironment

重量

[movie: PhysicsTricycle]

手下

[movie: PhysicsBug]