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Motion Planning with Kinematics and Dynamics

m Geometric constraints are generally not sufficient to adequately express robot
motions

m Constraints on velocity, forces, torques, accelerations are needed for better
representations

[movie: geometric]
[movie: kinematic]

[movie: dynamics]
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Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

g(g9,9) ™0

where
m g(q, g) is some function g : Q x Q—R
m X can be any of the symbols =, <, >, <, >
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Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

g(q,q) =0
where
m g(q, g) is some function g : Q x Q—R
m X can be any of the symbols =, <, >, <, >

Example of point in plane
m configuration: g = (x,y) € R?

m velocity: % =4=(x,y)
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Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

g(g9,9) ™0

where
m g(q, g) is some function g : Q x Q—R
m X can be any of the symbols =, <, >, <, >

Example of point in plane
m configuration: g = (x,y) € R?
m velocity: % =4=(x,y)
Examples of implicit velocity constraints
x>0
mx=0
2y <

X=X
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Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed, and are of the form
g=f(q,u)

where

m 7(g, u) is some function f : @ x U — Q that expresses a set of differential
equations

m v is an input control
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Kinematics for Wheeled Systems — A Simple Car

Car configuration: g = (x,y,0) € R x S*
Body frame

m Origin is at the center of rear axle
m x-axis points along main axis of the car

Velocity (signed speed): s
m Steering angle: ¢

How does the car move?

Express car motions as a set of
differential equations

X = ﬂ(X7y70757¢)
my= 7C2(X7_)/79757¢)
] é:fé(x7_)/79757¢)
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Kinematics for Wheeled Systems — A Simple Car

Car configuration: g = (x,y,0) € R x S*
Body frame

m Origin is at the center of rear axle
m x-axis points along main axis of the car

Velocity (signed speed): s
m Steering angle: ¢

How does the car move?

m In a small time interval At, the car must move

Express car motions as a set of i i k k
differential equations approximately in the direction that the rear wheels

inti
.= ﬂ(X,y,G,S,(ﬁ) are pointing

my= 7C2(X7_)/79757¢)
] é:fé(x7_)/79757¢)
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Kinematics for Wheeled Systems — A Simple Car

Car configuration: g = (x,y,0) € R x S*
Body frame

m Origin is at the center of rear axle
m x-axis points along main axis of the car

Velocity (signed speed): s
m Steering angle: ¢

How does the car move?

m In a small time interval At, the car must move

Express car motions as a set of i i k k
differential equations approximately in the direction that the rear wheels

inti
.= ﬂ(X,y,G,S,(ﬁ) are pointing

my= 7C2(X7_)/79757¢)
] é:fé(x7_)/79757¢)

m In the limit, as At — 0, then & — tan 0, ie.,

dx
—Xsinf + ycosf =0
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Kinematics for Wheeled Systems — A Simple Car

Car configuration: g = (x,y,0) € R x S*
Body frame

m Origin is at the center of rear axle
m x-axis points along main axis of the car

Velocity (signed speed): s
m Steering angle: ¢

How does the car move?

m In a small time interval At, the car must move
approximately in the direction that the rear wheels
are pointing

Express car motions as a set of
differential equations

mXx= fl(X7}/70757¢)
my= 7C2(X7_)/79757¢)
] é:fé(x7_)/79757¢)

m In the limit, as At — 0, then % =tand, i.e.,
—Xsinf + ycosf =0

m Solution is of the form x = scosf and y = ssinf
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Kinematics for Wheeled Systems — A Simple Car

Car configuration: g = (x,y,0) € R x S*
Body frame

m Origin is at the center of rear axle
m x-axis points along main axis of the car

Velocity (signed speed): s

m Steering angle: ¢

How does the car move?

m In a small time interval At, the car must move
approximately in the direction that the rear wheels
are pointing

Express car motions as a set of
differential equations

mXx= fl(X7}/70757¢)
my= 7C2(X7_)/79757¢)
] é:fé(x7_)/79757¢)

m In the limit, as At — 0, then % =tand, i.e.,
—Xsinf + ycosf =0
m Solution is of the form x = scosf and y = ssinf

m What about 67?
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Kinematics for Wheeled Systems — A Simple Car

m w: distance traveled by the car
m dw = pdf

If the steering angle is fixed at ¢, the car travels in
circular motion, in which the radius of the circle is p

mp=1L/tan¢

where L is the distance from front to rear axles
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Kinematics for Wheeled Systems — A Simple Car

m w: distance traveled by the car
m dw = pdf
If the steering angle is fixed at ¢, the car travels in
circular motion, in which the radius of the circle is p
mp=1L/tan¢

where L is the distance from front to rear axles

m Therefore

tan ¢ _ tang¢ ;S
i dw = [ s:>9than¢

df =
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Kinematics for Wheeled Systems — A Simple Car

w: distance traveled by the car

dw = pdf
If the steering angle is fixed at ¢, the car travels in
circular motion, in which the radius of the circle is p

p=L/tan¢

where L is the distance from front to rear axles

m Therefore

tan¢dW: tan¢s:>9': E'can(b

40 = =T L L

How should we control the car?
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Kinematics for Wheeled Systems — A Simple Car

w: distance traveled by the car

dw = pdf
If the steering angle is fixed at ¢, the car travels in
circular motion, in which the radius of the circle is p

p=L/tan¢

where L is the distance from front to rear axles

m Therefore

tan¢dW: tan¢s:>9': E'can(b

40 = =T L L

How should we control the car?
m Setting the speed s, i.e., us =s

m Setting the steering angle ¢, i.e., uy = ¢
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Kinematics for Wheeled Systems — A Simple Car

w: distance traveled by the car

dw = pdf
If the steering angle is fixed at ¢, the car travels in
circular motion, in which the radius of the circle is p

p=L/tan¢

where L is the distance from front to rear axles

m Therefore

do = taZ¢dw = taz¢s =0= %tanqﬁ
How should we control the car?
m Setting the speed s, i.e., us =s
m Setting the steering angle ¢, i.e., uy = ¢
Putting it all together
m Input controls: us (speed) and uy (steering angle)
m Equations of motions: X = uscosf Y = ussinf 6= T tanug
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Variations of the Simple Car Model

m Input controls: us (speed) and uy (steering angle)

m Equations of motions: X = us cosf Yy = ussinf 6= % tan ug

What are the bounds on the steering angle?

What are the bounds on the speed?
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Variations of the Simple Car Model

m Input controls: us (speed) and uy (steering angle)

m Equations of motions: X = us cosf Yy = ussinf 6= % tan ug
What are the bounds on the steering angle?
What are the bounds on the speed?

Tricycle
mus€[-1,1 and uy € [-7/2,7/2]

m Can it rotate in place?
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Variations of the Simple Car Model

m Input controls: us (speed) and uy (steering angle)

m Equations of motions: X = us cosf Yy = ussinf 6= % tan ug

What are the bounds on the steering angle?
What are the bounds on the speed?
Tricycle
mus€[-1,1 and uy € [-7/2,7/2]
m Can it rotate in place?
Standard simple car
mou €[-1,1]
B Uy € (—Pmax, Pmax) for some Pmax < /2
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Variations of the Simple Car Model

m Input controls: us (speed) and uy (steering angle)

m Equations of motions: X = us cosf Yy = ussinf 6= % tan ug

What are the bounds on the steering angle?
What are the bounds on the speed?
Tricycle
mus€[-1,1 and uy € [-7/2,7/2]
m Can it rotate in place?
Standard simple car
mou €[-1,1]
B Uy € (—Pmax, Pmax) for some Pmax < /2
Reeds-Shepp car
mus € {—1,0,1} (i.e., “reverse”, “park”, “forward")

m Uy same as in the standard simple car
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Variations of the Simple Car Model

m Input controls: us (speed) and uy (steering angle)

m Equations of motions: X = us cosf Yy = ussinf 6= % tan ug

What are the bounds on the steering angle?
What are the bounds on the speed?
Tricycle
mus€[-1,1 and uy € [-7/2,7/2]
m Can it rotate in place?
Standard simple car
mou €[-1,1]
B Uy € (—Pmax, Pmax) for some Pmax < /2
Reeds-Shepp car
mus € {—1,0,1} (i.e., “reverse”, “park”, “forward")
m Uy same as in the standard simple car
Dubins car
m us € {0,1} (i.e., “park”, “forward")
m uy same as in the standard simple car
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m u,: angular velocity of left wheel

v m u,: angular velocity of right wheel
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m u,: angular velocity of left wheel

v m u,: angular velocity of right wheel
How does the robot move?
—— IL
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m u,: angular velocity of left wheel

v m u,: angular velocity of right wheel
How does the robot move?
—— .
m u; = u, = moves forward in the
direction the wheels are pointing
! speed proportional to wheel radius r
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m u,: angular velocity of left wheel

v m u,: angular velocity of right wheel

How does the robot move?

m u; = u, = moves forward in the
direction the wheels are pointing

! speed proportional to wheel radius r

m uy = —u, = rotates clockwise because
wheels are turning in opposite directions
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m u,: angular velocity of left wheel

v m u,: angular velocity of right wheel

How does the robot move?

m u; = u, = moves forward in the
direction the wheels are pointing

! speed proportional to wheel radius r

m uy = —u, = rotates clockwise because
o wheels are turning in opposite directions

. Where is the body frame placed?
m origin at the center of the axle between
the wheels
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Kinematics for Wheeled Systems — Differential Drive

y Input controls u = (ue, uy)

m u,: angular velocity of left wheel
—

m u,: angular velocity of right wheel

How does the robot move?

m u; = u, = moves forward in the
direction the wheels are pointing

ey - speed proportional to wheel radius r

e m uy = —u, = rotates clockwise because
Equations of motions wheels are turning in opposite directions
m x = 5(ue+ u)cost )
Where is the body frame placed?

m origin at the center of the axle between

m 0= (u — u) the wheels

my=75(u+u)sinf
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Kinematics for Wheeled Systems — Differential Drive

- Input controls u = (ue, uy)
m u,: angular velocity of left wheel
! m u,: angular velocity of right wheel
How does the robot move?
i m Uy = u, = moves forward in the
. direction the wheels are pointing
Equa‘gionsrof motions speed proportional to wheel radius r
m x = 5(ue+ u)cost .
m = (ue+ u)sin0 m u; = —u, = rotates clockwise because
'\_/_ a\te T Ur)s! wheels are turning in opposite directions
_r
m 0= 7(ur—ur) Where is the body frame placed?
Different way of representing equations of m origin at the center of the axle between
motions the wheels

m u, = (ue + ur)/2 (rotate)
m uy = (ur — ug) (translate)
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m ug: angular velocity of left wheel

——— m u,: angular velocity of right wheel

How does the robot move?

m uy = u, = moves forward in the
direction the wheels are pointing

o speed proportional to wheel radius r
[ m up = —u, = rotates clockwise because

Equations of motions wheels are turning in opposite directions

m X = 5(ue + ur) cosf Where is the body frame placed?

- y = 3(ue +ur)sind m origin at the center of the axle between

w0 ="(u— u) the wheels
Different way of representing equations of Then
motions m X = ru, cosf

m = (e + u7)/2 (rotate) - i = rusind

m uy = (ur — ug) (translate) w6 =ruy/L
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Kinematics for Wheeled Systems — Differential Drive

Input controls u = (ue, uy)
m ug: angular velocity of left wheel

——— m u,: angular velocity of right wheel

How does the robot move?

m uy = u, = moves forward in the
direction the wheels are pointing

o speed proportional to wheel radius r
[ m up = —u, = rotates clockwise because

Equations of motions wheels are turning in opposite directions

m X = 5(ue + ur) cosf Where is the body frame placed?

- y = 3(ue +ur)sind m origin at the center of the axle between

w0 ="(u— u) the wheels
Different way of representing equations of Then
motions m X = ru, cosf

m = (e + u7)/2 (rotate) - i = rusind

m uy = (ur — ug) (translate) w6 =ruy/L

Can the differential drive move between any two configurations?
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Kinematics for Wheeled Systems — Unicycle

m rider can set the pedaling speed and the
orientation of the wheel with respect to
the z-axis

r: wheel radius
o: pedaling angular velocity

s = ro: speed of unicycle

w: rotational velocity in the xy plane
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Kinematics for Wheeled Systems — Unicycle

m rider can set the pedaling speed and the
orientation of the wheel with respect to
the z-axis

r: wheel radius

o: pedaling angular velocity

Equations of motions
B X = u,rcosf

s = ro: speed of unicycle

) ) w: rotational velocity in the xy plane
my=u,rsinf

m0=u,
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Tractor Trailer

Equations of motions:
m X =scosf

my=ssinf

m 0y =s/Ltan¢

| | élzs/dlsin(é?l—eo)
]

w0 = s/dj(l'lj"-;l1 cos(fj—1—0;))sin(0i—1—6;)

Erion Plaku (Robotics)

Consider a simple car pulling k trailers
(similar to an airport luggage cart).

Each trailer is attached to rear axle of
body in front of it.

New parameter here is hitch length, d;,
the distance from the center of the rear
axle of trailer i to the point at which the
trailer is hitched to next body.

The car itself contributes R? x S to C,
and each trailer contributes an S*. So,
IC] =k + 1.

The configuration transition equation is
somewhat of an art to get right. The
one here is adapted from Murray, Sastry,
IEE Trans Autom Control, 1993.

[movie: strailer4]



Tractor Trailer

Equations of motions:
m X =scosf

my=ssinf

m 0y =s/Ltan¢

| | élzs/dlsin(é?l—eo)
]

w0 = s/dj(l'lj"-;l1 cos(fj—1—0;))sin(0i—1—6;)

How about acceleration?
Erion Plaku (Robotics)

Consider a simple car pulling k trailers
(similar to an airport luggage cart).

Each trailer is attached to rear axle of
body in front of it.

New parameter here is hitch length, d;,
the distance from the center of the rear
axle of trailer i to the point at which the
trailer is hitched to next body.

The car itself contributes R? x S to C,
and each trailer contributes an S*. So,
IC] =k + 1.

The configuration transition equation is
somewhat of an art to get right. The
one here is adapted from Murray, Sastry,
IEE Trans Autom Control, 1993.

[movie: strailer4]



Dynamical Systems

m Involve acceleration g in addition to velocity ¢ and configuration g
m Implicit constraints

§(4,4,9) =0
m Parametric constraints

G=1(q,q,u)
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Phase Space: Reducing Degree by Increasing Dimension

Example: y € R is a scalar variable and

y=3y+y=0 (1)

Erion Plaku (Robotics) 12



Phase Space: Reducing Degree by Increasing Dimension

Example: y € R is a scalar variable and
y—=3y+y=0 (1)

Let x = (x1,x2) denote a phase vector, where

X1 =Yy

X2 =Yy
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Phase Space: Reducing Degree by Increasing Dimension

Example: y € R is a scalar variable and
y—=3y+y=0 (1)

Let x = (x1,x2) denote a phase vector, where

X =Yy
.XQZ_)'/
Then

X —3x+x1=0 (2)
Are (1) and (2) equivalent?
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Phase Space: Reducing Degree by Increasing Dimension

Example: y € R is a scalar variable and
y—=3y+y=0 (1)

Let x = (x1,x2) denote a phase vector, where

X =Yy
.XQZ_)'/
Then

X —3x+x1=0 (2)
Are (1) and (2) equivalent?

m yes, if we also add the constraint x> = X1
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Phase Space: Reducing Degree by Increasing Dimension

Example: y € R is a scalar variable and
y—=3y+y=0 (1)

Let x = (x1,x2) denote a phase vector, where

X =Yy
.XQZ_)'/
Then

X —3x+x1 =0 (2)
Are (1) and (2) equivalent?
m yes, if we also add the constraint x> = X1
Thus, (1) can be rewritten as two constraints
X1 = Xo

] )'(2:3X2—X1

Erion Plaku (Robotics) 12



Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then

Erion Plaku (Robotics) 13



Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then

Select an input control u;
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Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then
Select an input control u;

Rename the input control as a new state variable x,+1 = u;
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Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then

Select an input control u;

N

Rename the input control as a new state variable x,+1 = u;

Define a new input control u; that takes the place of u;
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Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then

Select an input control u;

Rename the input control as a new state variable x,+1 = u;
Define a new input control u; that takes the place of u;
a

Extend the equations of motions by one dimension by introducing X,+1 = u;
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Extending Models by Adding Integrators

Suppose equations of motions are given as
x = f(x,u)

Let n denote the dimension. Then

Select an input control u;

N

Rename the input control as a new state variable x,+1 = u;
Define a new input control u; that takes the place of u;
@A Extend the equations of motions by one dimension by introducing x,4+1 = u/

Procedure referred to as placing an integrator in front of u;
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Putting it all together: Car

Kinematic (first-order) model Dynamics (second-order) model
State s = (x,y, )

m Position (x,y) € R?

m Orientation § ¢ S!
Control inputs u = (us, ug)

m Translational velocity us € R

m Steering angle uy € R

Motion equations § = f(s, u),

where
X us cos 6
s=|y | = us sin 6
0 T tanug
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Putting it all together: Car

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,s,¢)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation 0 € S*

Control inputs u = (us, ug) m Translational velocity s € R

m Translational velocity us € R m Steering angle ¢ € R

m Steering angle uy € R

Motion equations § = f(s, u),

where
X us cos 6
s=|y | = us sin 6
0 T tanug
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Putting it all together: Car

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,s,¢)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation 0 € S*

Control inputs u = (us, ug) m Translational velocity s € R

m Translational velocity us € R m Steering angle ¢ € R

m Steering angle uy € R Control inputs u = (u1, u2)

i tions s = f(s, u . .
Motion equa (s, u), m Translational acceleration u; € R

where ) ] )
m Steering rotational velocity u, € R
X us cos 6
s=|y | = us sin 6
0 T tanug
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Putting it all together: Car

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,s,¢)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation 0 € S*

Control inputs u = (us, ug) m Translational velocity s € R

m Translational velocity us € R m Steering angle ¢ € R

m Steering angle uy € R Control inputs u = (u1, u2)

i tions s = f(s, u . .
Motion equa (s, u), m Translational acceleration u; € R

where
m Steering rotational velocity u, € R
) X Us c9s€ Motion equations § = f(s, u), where
s=\|vy | = ussin
0 T tanug X s cos
y ssinf
5= 0 |=| jtand
s uy
é U2
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Putting it all together: Car

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,s,¢)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation 0 € S*

Control inputs u = (us, ug) m Translational velocity s € R

m Translational velocity us € R m Steering angle ¢ € R

m Steering angle uy € R Control inputs u = (u1, u2)

i tions s = f(s, u . .
Motion equa (s, u), m Translational acceleration u; € R

where
m Steering rotational velocity u, € R
X . . .
. . Us c9s€ Motion equations § = f(s, u), where
s=\|vy | = ussinf
o T tan ug X scosf s cos ) cos ¢
y ssinf ssinfcos ¢
5= 0 |=| {tang | or 7sing
s up ui
d) up up

[movie: SCar]
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Putting it all together: Differential Drive

Kinematic (first-order) model Dynamics (second-order) model
State s = (x,y, )

m Position (x,y) € R?

m Orientation § ¢ S!
Control inputs u = (ug, ur)

m Angular velocities ug, ur € R

Motion equations § = f(s, u), where

X 5(ue + ur) cos 6
s=1|y |=| 5(u+u)sind
0 {(u, — )
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Putting it all together: Differential Drive

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) State s = (x,y,0, s¢,sr)
= Position {x,y) € R? m Position (x,y) € R?
m Orientation 0 € S m Orientation § € S*
Control inputs u = (uz, u,) m Angular velocities s¢, s, € R
m Angular velocities ug, ur € R

Motion equations § = f(s, u), where

X 5(ue + ur) cos 6
s=1|y |=| 5(u+u)sind
0 {(u, — )
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Putting it all together: Differential Drive

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) State s = (x,y,0, s¢,sr)
= Position {x,y) € R? m Position (x,y) € R?
m Orientation 0 € S m Orientation § € S*
Control inputs u = (uz, u,) m Angular velocities s¢, s, € R
m Angular velocities ug, ur € R Control inputs = (u1, u2)
Motion equations § = f(s, u), where m Angular acceleration for left wheel,

x 5(ue + uy) cos u €R
s=|y | =1 5(u+u)sin m Angular acceleration for right wheel,
0 7 (ur — ur) mn €R
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Putting it all together: Differential Drive

Kinematic (first-order) model
State s = (x,y, )

m Position (x,y) € R?

m Orientation § ¢ S!
Control inputs u = (ug, ur)

m Angular velocities ug, ur € R

Motion equations § = f(s, u), where

X 5(ue + ur) cos 6
s=1|y |=| 5(u+u)sind
0 {(u, — )

Erion Plaku (Robotics)

Dynamics (second-order) model

State s = (x,y,0, s¢,sr)
m Position (x,y) € R?
m Orientation § € S!
m Angular velocities s¢, s, € R
Control inputs u = (u1, tr)
m Angular acceleration for left wheel,
u €R
m Angular acceleration for right wheel,
weR

Motion equations § = f(s, u), where

(
(

X 5(se + s)cos

y 5(se +s:)sin6
s=1| 6 | = 7(sr —se)

Se un

5, uz

[movie: SDDrive]



Putting it all together: Unicycle

Kinematic (first-order) model Dynamics (second-order) model
State s = (x,y, )
m Position (x,y) € R?
m Orientation § ¢ S!
Control inputs u = (uo, Us,)
m Translational velocity u, € R
m Rotational velocity u, € R
Motion equations § = f(s, u), where
X Uy r cos b
$=| Yy |=| uorsind
0 U
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Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,0,w)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation § € S*

Control inputs u = (uo, i) m Translational velocity o € R

m Translational velocity u, € R u Rotational velocity w € R

m Rotational velocity u, € R
Motion equations § = f(s, u), where
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State s = (x,y, ) , State s = (x,y,0,0,w)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation § € S*

li = . .
Control inputs u = (uo, i) m Translational velocity o € R

m Translational velocity u, € R u Rotational velocity w € R

Rotati | velocit R .
m Rotational velocity u, € Control inputs u = (u1, uz)

Motion equations § = f(s, u), where . .
q (s, u), m Translational acceleration u; € R
X Usrcosf m Rotational acceleration u; € R
s=|y | = ugrsinf
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Putting it all together: Unicycle

Kinematic (first-order) model Dynamics (second-order) model

State s = (x,y, ) , State s = (x,y,0,0,w)
= Position (x,y) €R m Position (x,y) € R?

1
m Orientation 0 € S m Orientation § € S*

li = . .
Control inputs u = (uo, i) m Translational velocity o € R

m Translational velocity u, € R u Rotational velocity w € R

Rotati | velocit R .
m Rotational velocity u, € Control inputs u = (u1, uz)

Motion equations § = f(s, u), where . .
q (s, u), m Translational acceleration u; € R

X Usrcosf m Rotational acceleration u; € R
S=| Y |=| Uorsinf Motion equations § = f(s, u), where

0 Uy,

X orcosf

y orsinf

s=|6 | = w
o up
d) uz
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Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

INTEGRATE

ds(/dt = f(s, u)

Consider
m a starting state sp
m an input control u
m motion equations § = (s, u)
Let s(t) denote the state at time t. Then,

S(t) = s + /h:t F(s(h), u)dh

=0
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Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

INTEGRATE

ds(/dt = f(s, u)

Consider
m a starting state sp
m an input control u
m motion equations § = (s, u)
Let s(t) denote the state at time t. Then,
h=t
s(t) = —|—/ f(s(h), u)dh
h=0
Computation can be carried out by

m Closed-form integration when available or

m Numerical integration
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Numerical Integration — Euler Method

Let At denote a small time step. We would like to compute s(At) as
h=At
s(At) = s(0) + / f(s(h), u)dh
h=0
Euler Approximation

f(S(t), U) = S(t) = dsd(tt) ~ S(At)A; 5(0)

Therefore,
s(At) =~ s(0) + At f(s(t), u)

For example, Euler integration of the kinematic model of unicycle yields:

X0 Uyt cos B
s(At)~ | yo | + At | uorsinf
0o Uy,

m Advantage: Simple and efficient

m Disadvantage: Not very accurate (first-order approximation)
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Numerical Integration — Runge-Kutta Method

Let At denote a small time step. We would like to compute s(At) as

h=At

s(At) = s(0) + / f(s(h), u)dh

h=0

Fourth-order Runge-Kutta integration:
At
s(At) =~ s(0) + - (w1 + wo + ws + wa)

where

= f(s(0), v)

wy = £(s(0) + 2F A wi, u)

ws = f(s(0) + — A wa, U)
wy = f(s(0) + At ws, u)
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Motion-Planning Problem for Systems with Differential Constraints

Given
m State space S
Control space U

Equations of motions as differential equations f : S x U — §

L]
L]
m State-validity function VALID : S — {true, false}, e.g, check collisions
m Goal function GOAL : S — {true, false}

L]

Initial state sp

Compute a control trajectory u : [0, T] — U such that the resulting state trajectory
s:[0, T] — S obtained by integration is valid and reaches the goal, i.e.,

s(t):so+/h::t F(s(t), u(t))dh (1)

Vt € [0, T] : vALID(s(t)) = true (2)
3t € [0, T] : GOAL(s(t)) = true (3)

Erion Plaku (Robotics) 20



Motion-Planning Methods for Systems with Differential Constraints

Decoupled approach
Compute a geometric solution path ignoring differential constraints

Transform the geometric path into a trajectory that satisfies the differential
constraints

Sampling-based Motion Planning

m Take the differential constraints into account during motion planning
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Sampling-based Motion Planning with Differential Constraints

Roadmap Approaches

0. Initialization
add sinit and sgoa1 to roadmap vertex set V

1. Sampling
repeat several times
s <~ STATESAMPLE()
if ISSTATEVALID(S) = true
add s to roadmap vertex set V

2. Connect Samples
for each pair of neighboring samples (ss,s5) € V x V

A < GENERATELOCALTRAJECTORY(Sa, Sp)
if ISTRAJECTORY VALID(A) = true
add (sa, sp) to roadmap edge set E

3. Graph Search
search graph (V/, E) for path from sinis tO Sgoal
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Implementation of Roadmap Approaches with Differential Constraints

s < STATESAMPLE()
m generate random values for all the state components
ISSTATEVALID(s)

m place the robot in the configuration specified by the position and orientation
components of the state

m check if the robot collides with the obstacles

m check if velocity and other state components are within desired bounds
ISTRAJECTORY VALID(A)

m use subdivision or incremental approach to check if intermediate states are valid
A + GENERATELOCALTRAJECTORY(Ss, Sp)

m linear interpolation between s, and s, won't work as it does not respect underlying
differential constraints

m need to find control function v : [0, T] — U such that trajectory obtained by
applying u to s, for T time units ends at s

m known as two-point boundary value problem

m cannot always be solved analytically, and numerical solutions increase
computational cost
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Tree Approaches with Differential Constraints

RRT

1: T < create tree rooted at Sinit

2: while solution not found do

I>select state from tree

3:  Srand ¢ STATESAMPLE()

4: Snear $— Nearest configuration in 7 to grana according to distance p
>>add new branch to tree from selected configuration

5: X < GENERATELOCALTRAJECTORY(Shcar, Srand)

6:  if ISSUBTRAJECTORYVALID(A, 0, step) then

7 Snew — A(step)

8: add configuration shew and edge (Spears Snew) to T
> check if a solution is found

9: if p(Snew Sgoal) = 0 then

10: return solution trajectory from root to spew

v STATESAMPLE(): random values for state components
Vp:S§ xS — R distance metric between states
v ISSUBTRAJECTORY VALID(, 0, step): incremental approach

A + GENERATELOCALTRAJECTORY (Snear, Srand )
m will it not create the same two-boundary value problems as in PRM?
m is it necessary to connect to Syand?

m would it suffice to just come close to Sana?
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Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from Spear tO Srand COMpute a trajectory that starts
at Spear and extends toward S;ana

Approach 1 — extend according to random control
m Sample random control u in U
m Integrate equations of motions when applying u to syear for At units of time, i.e.,

h=At

A — S(t) = Snear +/ f(S(t), U)dh

h=0

Approach 2 — find the best-out-of-many random controls
fori=1,...,mdo
u; < sample random control in U
Ai = s(£) = snear + [ F(s(t), ur)dh
d;i + p(S,rand7 Ai (At
return \; with minimum d;

[movie: Traj]
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Sampling-based Motion Planning with Physics-Based Simulations

Tree approaches require only the ability to simulate robot motions

INTEGRATE

ds(t)/dt = f(s, u)

m Physics engines can be used to simulate robot motions
m Physics engines provide greater simulation accuracy

m Physics engines can take into account friction, gravity, and interactions of the robot
with objects in the evironment

@V BULLET OpPEN DYNAMICS ENGINE"

[movie: PhysicsTricycle]

[movie: PhysicsBug]
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