Introduction to Robotics Motion Planning with Kinematics and Dynamics

Erion Plaku

Department of Electrical Engineering and Computer Science Catholic University of America

Motion Planning with Kinematics and Dynamics

- Geometric constraints are generally not sufficient to adequately express robot motions
- Constraints on velocity, forces, torques, accelerations are needed for better representations

[movie: geometric]

[movie: kinematic]

[movie: dynamics]

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● の � @ ▶

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- \blacksquare \bowtie can be any of the symbols $=,<,>,\leq,\geq$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─ のへで

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- \blacksquare \bowtie can be any of the symbols $=,<,>,\leq,\geq$

Example of point in plane

- configuration: $q = (x, y) \in \mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed, and are of the form

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- \blacksquare \bowtie can be any of the symbols $=,<,>,\leq,\geq$

Example of point in plane

- configuration: $q = (x, y) \in \mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

Examples of implicit velocity constraints

■
$$\dot{x} = 0$$

$$\quad \quad \mathbf{\dot{x}}^2 + \dot{y}^2 \leq 1$$

•
$$x = \dot{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed, and are of the form

 $\dot{q} = f(q, u)$

where

- f(q, u) is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations
- *u* is an input control

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● の Q ()

• Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- Body frame
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed): s
- \blacksquare Steering angle: ϕ

How does the car move?

Express car motions as a set of differential equations

• $\dot{x} = f_1(x, y, \theta, s, \phi)$

•
$$\dot{y} = f_2(x, y, \theta, s, \phi)$$

$$\bullet \dot{\theta} = f_3(x, y, \theta, s, \phi)$$

Express car motions as a set of differential equations

• $\dot{x} = f_1(x, y, \theta, s, \phi)$

•
$$\dot{y} = f_2(x, y, \theta, s, \phi)$$

$$\bullet \dot{\theta} = f_3(x, y, \theta, s, \phi)$$

• Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- Body frame
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed): s
- \blacksquare Steering angle: ϕ

How does the car move?

■ In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\dot{y} = f_2(x, y, \theta, s, \phi)$
- $\bullet \dot{\theta} = f_3(x, y, \theta, s, \phi)$

• Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- Body frame
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed): s
- \blacksquare Steering angle: ϕ

How does the car move?

- In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin \theta + \dot{y}\cos \theta = 0$

(B)

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\dot{y} = f_2(x, y, \theta, s, \phi)$
- $\bullet \dot{\theta} = f_3(x, y, \theta, s, \phi)$

• Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- Body frame
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed): s
- \blacksquare Steering angle: ϕ

How does the car move?

- In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin \theta + \dot{y}\cos \theta = 0$
- Solution is of the form $\dot{x} = s \cos \theta$ and $\dot{y} = s \sin \theta$

イロト イポト イヨト イヨト

Express car motions as a set of differential equations

- $\dot{x} = f_1(x, y, \theta, s, \phi)$
- $\dot{y} = f_2(x, y, \theta, s, \phi)$
- $\bullet \dot{\theta} = f_3(x, y, \theta, s, \phi)$

• Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$

- Body frame
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed): s
- \blacksquare Steering angle: ϕ

How does the car move?

- In a small time interval Δt , the car must move approximately in the direction that the rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x}\sin \theta + \dot{y}\cos \theta = 0$
- Solution is of the form $\dot{x} = s \cos \theta$ and $\dot{y} = s \sin \theta$

イロト イポト イヨト イヨト

What about θ?

- w: distance traveled by the car
- $dw = \rho d\theta$

If the steering angle is fixed at $\phi,$ the car travels in circular motion, in which the radius of the circle is ρ

$$\blacksquare \ \rho = L/\tan\phi$$

where L is the distance from front to rear axles

글 🕨 🛛 글

- w: distance traveled by the car
- $dw = \rho d\theta$

If the steering angle is fixed at $\phi,$ the car travels in circular motion, in which the radius of the circle is ρ

$$\bullet \ \rho = L/\tan\phi$$

where L is the distance from front to rear axles

Therefore

$$d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi$$

- ₹ 🖹 🕨

How should we control the car?

- w: distance traveled by the car
- $dw = \rho d\theta$

If the steering angle is fixed at $\phi,$ the car travels in circular motion, in which the radius of the circle is ρ

•
$$\rho = L/\tan\phi$$

where L is the distance from front to rear axles

Therefore

$$d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi$$

3

프 > > 프 >

■ w: distance traveled by the car

• $dw = \rho d\theta$

If the steering angle is fixed at $\phi,$ the car travels in circular motion, in which the radius of the circle is ρ

 $\bullet \ \rho = L/\tan\phi$

where L is the distance from front to rear axles

Therefore

$$d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi$$

How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$

- w: distance traveled by the car
- $dw = \rho d\theta$

If the steering angle is fixed at $\phi,$ the car travels in circular motion, in which the radius of the circle is ρ

 $\bullet \ \rho = L/\tan\phi$

where L is the distance from front to rear axles

Therefore

$$d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi$$

イロト イポト イヨト イヨト

How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$

Putting it all together

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$
- Can it rotate in place?

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$
- Can it rotate in place?

Standard simple car

■
$$u_s \in [-1, 1]$$

•
$$u_{\phi} \in (-\phi_{\max}, \phi_{\max})$$
 for some $\phi_{\max} < \pi/2$

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$
- Can it rotate in place?

Standard simple car

- $u_s \in [-1, 1]$
- $u_{\phi} \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$

Reeds-Shepp car

- $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")
- u_{ϕ} same as in the standard simple car

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

- Input controls: u_s (speed) and u_{ϕ} (steering angle)
- Equations of motions: $\dot{x} = u_s \cos \theta$ $\dot{y} = u_s \sin \theta$ $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$

What are the bounds on the steering angle? What are the bounds on the speed?

Tricycle

- $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$
- Can it rotate in place?

Standard simple car

- $u_s \in [-1, 1]$
- $u_{\phi} \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$

Reeds-Shepp car

- $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")
- u_{ϕ} same as in the standard simple car

Dubins car

- $u_s \in \{0,1\}$ (i.e., "park", "forward")
- u_{ϕ} same as in the standard simple car

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Kinematics for Wheeled Systems – Differential Drive

- Input controls $u = (u_{\ell}, u_r)$ \bullet u_{ℓ} : angular velocity of left wheel
 - u_r : angular velocity of right wheel

Kinematics for Wheeled Systems – Differential Drive

- Input controls $u = (u_{\ell}, u_r)$ $\blacksquare u_{\ell}$: angular velocity of left wheel
 - u_r : angular velocity of right wheel

How does the robot move?

Kinematics for Wheeled Systems - Differential Drive

Input controls $u = (u_\ell, u_r)$

- u_ℓ : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

■ u_ℓ = u_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius r

Kinematics for Wheeled Systems - Differential Drive

Input controls $u = (u_{\ell}, u_r)$

- u_{ℓ} : angular velocity of left wheel
- *u_r*: angular velocity of right wheel

How does the robot move?

- u_ℓ = u_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Kinematics for Wheeled Systems – Differential Drive

Input controls $u = (u_{\ell}, u_r)$

- u_{ℓ} : angular velocity of left wheel
- *u_r*: angular velocity of right wheel

How does the robot move?

- u_ℓ = u_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius r
- $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

 origin at the center of the axle between the wheels

Kinematics for Wheeled Systems – Differential Drive

Equations of motions

 $\dot{\mathbf{x}} = \frac{r}{2}(u_{\ell} + u_r)\cos\theta$

$$\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta$$

$$\dot{\theta} = \frac{r}{L}(u_r - u_\ell)$$

Input controls $u = (u_{\ell}, u_r)$

- u_{ℓ} : angular velocity of left wheel
- *u_r*: angular velocity of right wheel
 How does the robot move?
 - *u*_ℓ = *u*_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius *r*
 - $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

 origin at the center of the axle between the wheels

Kinematics for Wheeled Systems - Differential Drive

Equations of motions

 $\dot{\mathbf{x}} \dot{\mathbf{x}} = \frac{r}{2}(u_{\ell} + u_r)\cos\theta$

$$\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta$$

$$\bullet \dot{\theta} = \frac{r}{L}(u_r - u_\ell)$$

Different way of representing equations of motions

•
$$u_{\omega} = (u_{\ell} + u_r)/2$$
 (rotate)
• $u_{\psi} = (u_r - u_{\ell})$ (translate)

Input controls $u = (u_{\ell}, u_r)$

- u_ℓ : angular velocity of left wheel
- *u_r*: angular velocity of right wheel

How does the robot move?

- *u*_ℓ = *u*_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius *r*
- $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

 origin at the center of the axle between the wheels

Kinematics for Wheeled Systems – Differential Drive

Equations of motions

$$\dot{x} = \frac{r}{2}(u_{\ell} + u_r)\cos\theta$$

$$\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta$$

$$\dot{\theta} = \frac{r}{L}(u_r - u_\ell)$$

Different way of representing equations of motions

•
$$u_{\omega} = (u_{\ell} + u_r)/2$$
 (rotate)
• $u_{\psi} = (u_r - u_{\ell})$ (translate)

Input controls $u = (u_{\ell}, u_r)$

- u_{ℓ} : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

- *u*_ℓ = *u*_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius *r*
- $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

 origin at the center of the axle between the wheels

Then

$$\dot{x} = ru_{\omega} \cos \theta$$

$$\dot{y} = ru_{\omega} \sin \theta$$

$$\bullet \dot{\theta} = r u_{\psi} / L$$

Kinematics for Wheeled Systems - Differential Drive

Equations of motions

$$\dot{x} = \frac{r}{2}(u_{\ell} + u_r)\cos\theta$$

$$\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta$$

$$\dot{\theta} = \frac{r}{L}(u_r - u_\ell)$$

Different way of representing equations of motions

•
$$u_{\omega} = (u_{\ell} + u_r)/2$$
 (rotate)

•
$$u_{\psi} = (u_r - u_{\ell})$$
 (translate)

Input controls $u = (u_\ell, u_r)$

- u_ℓ : angular velocity of left wheel
- u_r : angular velocity of right wheel

How does the robot move?

- *u*_ℓ = *u*_r ⇒ moves forward in the direction the wheels are pointing speed proportional to wheel radius *r*
- $u_{\ell} = -u_r \Rightarrow$ rotates clockwise because wheels are turning in opposite directions

Where is the body frame placed?

 origin at the center of the axle between the wheels

イロト イポト イヨト イヨト

Then

•
$$\dot{x} = ru_{\omega} \cos \theta$$

• $\dot{y} = ru_{\omega} \sin \theta$
• $\dot{\theta} = ru_{\psi}/L$

Can the differential drive move between any two configurations?

Э

Kinematics for Wheeled Systems – Unicycle

- rider can set the pedaling speed and the orientation of the wheel with respect to the z-axis
- r: wheel radius
- σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle
- ω : rotational velocity in the xy plane

Kinematics for Wheeled Systems – Unicycle

- rider can set the pedaling speed and the orientation of the wheel with respect to the z-axis
- r: wheel radius
- σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle
- ω : rotational velocity in the xy plane

Tractor Trailer

Equations of motions:

- $\dot{\mathbf{x}} = \mathbf{s} \cos \theta$
- $igtharrow \dot{y} = s \sin \theta$
- $\bullet \dot{\theta_0} = s/L \tan \phi$
- $\bullet \dot{\theta_1} = s/d_1\sin(\theta_1 \theta_0)$
- **.**...
- $\bullet \dot{\theta}_i = s/d_j(\prod_{j=1}^{i-1}\cos(\theta_{j-1}-\theta_j))\sin(\theta_{i-1}-\theta_i)$

- Consider a simple car pulling k trailers (similar to an airport luggage cart).
- Each trailer is attached to rear axle of body in front of it.
- New parameter here is hitch length, d_i, the distance from the center of the rear axle of trailer *i* to the point at which the trailer is hitched to next body.
- The car itself contributes ℝ² × S¹ to C, and each trailer contributes an S¹. So,
 |C| = k + 1.
- The configuration transition equation is somewhat of an art to get right. The one here is adapted from Murray, Sastry, IEE Trans Autom Control, 1993.

イロト イポト イヨト イヨト

[movie: strailer4]

Tractor Trailer

Equations of motions:

- $\dot{\mathbf{x}} = \mathbf{s} \cos \theta$
- $igtharrow \dot{y} = s \sin \theta$
- $\bullet \dot{\theta_0} = s/L \tan \phi$
- $\bullet \dot{\theta_1} = s/d_1\sin(\theta_1 \theta_0)$
- ...

$$\bullet \dot{\theta_i} = s/d_j(\prod_{j=1}^{i-1}\cos(\theta_{j-1}-\theta_j))\sin(\theta_{i-1}-\theta_i)$$

- Consider a simple car pulling k trailers (similar to an airport luggage cart).
- Each trailer is attached to rear axle of body in front of it.
- New parameter here is hitch length, d_i, the distance from the center of the rear axle of trailer *i* to the point at which the trailer is hitched to next body.
- The car itself contributes ℝ² × S¹ to C, and each trailer contributes an S¹. So,
 |C| = k + 1.
- The configuration transition equation is somewhat of an art to get right. The one here is adapted from Murray, Sastry, IEE Trans Autom Control, 1993.

[movie: strailer4]

How about acceleration?

Dynamical Systems

- Involve acceleration \ddot{q} in addition to velocity \dot{q} and configuration q
- Implicit constraints

$$g(\ddot{q},\dot{q},q)=0$$

Parametric constraints

$$\ddot{q} = f(\dot{q}, q, u)$$

Phase Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a phase vector, where

•
$$x_1 = y$$

• $x_2 = \dot{y}$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a phase vector, where

• $x_1 = y$ • $x_2 = \dot{y}$

Then

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─ のへで

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a phase vector, where

• $x_1 = y$ • $x_2 = \dot{y}$

Then

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

• yes, if we also add the constraint $x_2 = \dot{x}_1$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a phase vector, where

- $x_1 = y$
- $x_2 = \dot{y}$

Then

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

• yes, if we also add the constraint $x_2 = \dot{x}_1$ Thus, (1) can be rewritten as two constraints

 $\dot{x}_1 = x_2$

$$\dot{x}_2 = 3x_2 - x_1$$

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then

Suppose equations of motions are given as

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then

1 Select an input control u_i

Suppose equations of motions are given as

$$\dot{x} = f(x, u)$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● の Q ()

Suppose equations of motions are given as

$$\dot{x} = f(x, u)$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i

Suppose equations of motions are given as

$$\dot{x} = f(x, u)$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i
- **4** Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_i$

▲ロト ▲掃ト ▲注ト ▲注ト 三注 - のへで

Suppose equations of motions are given as

$$\dot{x} = f(x, u)$$

Let n denote the dimension. Then

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i
- **4** Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_i$

Procedure referred to as placing an integrator in front of u_i

▲ロト ▲圖ト ▲注ト ▲注ト 三注 - のへで

Putting it all together: Car

Kinematic (first-order) model

Dynamics (second-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_{\phi} \end{bmatrix}$$

Э

・ 同 ト ・ ヨ ト ・ ヨ ト

State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_{\phi} \end{bmatrix}$$

Dynamics (second-order) model

State $s = (x, y, \theta, \mathbf{s}, \phi)$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- \blacksquare Translational velocity $\boldsymbol{s} \in \mathbb{R}$
- \blacksquare Steering angle $\phi \in \mathbb{R}$

3

- 4 同 1 - 4 回 1 - 4 回 1

State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_{\phi} \end{bmatrix}$$

Dynamics (second-order) model

State $s = (x, y, \theta, \mathbf{s}, \phi)$

Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

- \blacksquare Translational velocity $\boldsymbol{s} \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translational acceleration $u_1 \in \mathbb{R}$
- Steering rotational velocity $u_2 \in \mathbb{R}$

State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{s} \cos \theta \\ u_{s} \sin \theta \\ \frac{u_{s}}{L} \tan u_{\phi} \end{bmatrix}$$

Dynamics (second-order) model

State $s = (x, y, \theta, \mathbf{s}, \phi)$

Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

- \blacksquare Translational velocity $\boldsymbol{s} \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

• Translational acceleration $u_1 \in \mathbb{R}$

• Steering rotational velocity $u_2 \in \mathbb{R}$ Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{s} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \mathbf{s} \cos \theta \\ \mathbf{s} \sin \theta \\ \mathbf{s} \\ \frac{s}{l} \tan \phi \\ u_1 \\ u_2 \end{bmatrix}$$

State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Translational velocity $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_{\phi} \end{bmatrix}$$

Dynamics (second-order) model

State $s = (x, y, \theta, \mathbf{s}, \phi)$

Position $(x, y) \in \mathbb{R}^2$

• Orientation $\theta \in S^1$

- \blacksquare Translational velocity $\boldsymbol{s} \in \mathbb{R}$
- \blacksquare Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

• Translational acceleration $u_1 \in \mathbb{R}$

• Steering rotational velocity $u_2 \in \mathbb{R}$ Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{s} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \mathbf{s} \cos \theta \\ \mathbf{s} \sin \theta \\ \mathbf{s} \\ \mathbf{t} \sin \phi \\ u_1 \\ u_2 \end{bmatrix} \text{ or } \begin{bmatrix} \mathbf{s} \cos \theta \cos \phi \\ \mathbf{s} \sin \theta \cos \phi \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{t} \sin \phi \\ u_1 \\ u_2 \end{bmatrix}$$

[movie: SCar]

Putting it all together: Differential Drive

Kinematic (first-order) model

Dynamics (second-order) model

イロト 不同 ト イヨト イヨト

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\ell}, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Э

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\ell}, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, s_{\ell}, s_{r})$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_\ell, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, s_{\ell}, s_{r})$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$
- Control inputs $u = (u_1, u_2)$
 - Angular acceleration for left wheel, $u_1 \in \mathbb{R}$
 - Angular acceleration for right wheel, $u_2 \in \mathbb{R}$

《曰》 《圖》 《臣》 《臣》

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_\ell, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, s_{\ell}, s_{r})$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- Angular velocities $s_\ell, s_r \in \mathbb{R}$
- Control inputs $u = (u_1, u_2)$
 - Angular acceleration for left wheel, $u_1 \in \mathbb{R}$
 - Angular acceleration for right wheel, $u_2 \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{s}_{\ell} \\ \dot{s}_{r} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(s_{\ell} + s_{r})\cos\theta \\ \frac{r}{2}(s_{\ell} + s_{r})\sin\theta \\ \frac{r}{L}(s_{r} - s_{\ell}) \\ u_{1} \\ u_{2} \\ \text{[movie: SDDrive]} \end{bmatrix}$$

イロト 不同 ト イヨト イヨト

Э

Putting it all together: Unicycle

Kinematic (first-order) model

Dynamics (second-order) model

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- Translational velocity $\sigma \in \mathbb{R}$

・ロト ・回ト ・ヨト ・ヨト

Rotational velocity $\omega \in \mathbb{R}$

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- \blacksquare Translational velocity $\sigma \in \mathbb{R}$
- **Rotational velocity** $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

• Translational acceleration $u_1 \in \mathbb{R}$

・ロト ・回ト ・ヨト ・ヨト

Rotational acceleration $u_2 \in \mathbb{R}$

- State $s = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$
- Translational velocity $\sigma \in \mathbb{R}$
- **Rotational velocity** $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translational acceleration $u_1 \in \mathbb{R}$
- Rotational acceleration $u_2 \in \mathbb{R}$ Motion equations $\dot{s} = f(s, u)$, where

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\sigma} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \sigma r \cos \theta \\ \sigma r \sin \theta \\ \omega \\ u_1 \\ u_2 \end{bmatrix}$$

< ロ > < 同 > < 臣 > < 臣 > -

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s₀
- an input control u
- motion equations $\dot{s} = f(s, u)$

Let s(t) denote the state at time t. Then,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(h), u) dh$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s₀
- an input control u
- motion equations $\dot{s} = f(s, u)$

Let s(t) denote the state at time t. Then,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(h), u) dh$$

Computation can be carried out by

- Closed-form integration when available or
- Numerical integration

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Numerical Integration – Euler Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh$$

Euler Approximation

$$f(s(t), u) = \dot{s}(t) = \frac{ds(t)}{dt} \approx \frac{s(\Delta t) - s(0)}{\Delta t}$$

Therefore,

$$s(\Delta t) \approx s(0) + \Delta t f(s(t), u)$$

For example, Euler integration of the kinematic model of unicycle yields:

$$s(\Delta t) pprox \begin{bmatrix} x_0 \\ y_0 \\ heta_0 \end{bmatrix} + \Delta t \begin{bmatrix} u_\sigma r \cos \theta \\ u_\sigma r \sin \theta \\ u_\omega \end{bmatrix}$$

- Advantage: Simple and efficient
- Disadvantage: Not very accurate (first-order approximation)

イロト 不得 とくほ とくほ とうほう

Numerical Integration – Runge-Kutta Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh$$

Fourth-order Runge-Kutta integration:

$$s(\Delta t) pprox s(0) + rac{\Delta t}{6} (w_1 + w_2 + w_3 + w_4)$$

where

$$w_{1} = f(s(0), u)$$

$$w_{2} = f(s(0) + \frac{\Delta t}{2}w_{1}, u)$$

$$w_{3} = f(s(0) + \frac{\Delta t}{2}w_{2}, u)$$

$$w_{4} = f(s(0) + \Delta t w_{3}, u)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Given

- State space S
- Control space U
- Equations of motions as differential equations $f: S \times U \rightarrow \dot{S}$
- State-validity function $VALID : S \rightarrow \{true, false\}$, e.g, check collisions
- Goal function GOAL : $S \rightarrow \{\texttt{true}, \texttt{false}\}$
- Initial state s₀

Compute a control trajectory $u : [0, T] \to U$ such that the resulting state trajectory $s : [0, T] \to S$ obtained by integration is valid and reaches the goal, i.e.,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(t), u(t)) dh$$
 (1)

- $\forall t \in [0, T] : VALID(s(t)) = true$ (2)
- $\exists t \in [0, T] : GOAL(s(t)) = true$ (3)

▲ロト ▲掃ト ▲注ト ▲注ト 三注 - のへで

Decoupled approach

- **I** Compute a geometric solution path ignoring differential constraints
- **2** Transform the geometric path into a trajectory that satisfies the differential constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

Roadmap Approaches

0. Initialization

add $\mathit{s}_{\mathrm{init}}$ and $\mathit{s}_{\mathrm{goal}}$ to roadmap vertex set V

1. Sampling

repeat several times

 $s \leftarrow \text{STATESAMPLE}()$ if IsSTATEVALID(s) = trueadd s to roadmap vertex set V

2. Connect Samples

for each pair of neighboring samples $(s_a, s_b) \in V imes V$

 $\lambda \leftarrow \text{GENERATELOCALTRAJECTORY}(s_a, s_b)$ if IsTRAJECTORYVALID $(\lambda) = \texttt{true}$ add (s_a, s_b) to roadmap edge set E

3. Graph Search

search graph (V, E) for path from s_{init} to s_{goal}

3 x 3

< ∃ →

< 17 ▶

- $s \leftarrow \text{StateSample}()$
 - generate random values for all the state components
- ISSTATEVALID(s)
 - place the robot in the configuration specified by the position and orientation components of the state
 - check if the robot collides with the obstacles
 - $\hfill \ensuremath{\,\bullet\)}$ check if velocity and other state components are within desired bounds

IsTrajectoryValid(λ)

- use subdivision or incremental approach to check if intermediate states are valid
- $\lambda \leftarrow \text{GenerateLocalTrajectory}(s_a, s_b)$
 - linear interpolation between s_a and s_b won't work as it does not respect underlying differential constraints
 - need to find control function $u : [0, T] \to U$ such that trajectory obtained by applying u to s_a for T time units ends at s_b
 - known as two-point boundary value problem
 - cannot always be solved analytically, and numerical solutions increase computational cost

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Tree Approaches with Differential Constraints

RRT

- 1: $\mathcal{T} \leftarrow \text{create tree rooted at } s_{\text{init}}$
- 2: while solution not found do

⊳select state from tree

- 3: $s_{\text{rand}} \leftarrow \text{STATESAMPLE}()$
- 4: $s_{\text{near}} \leftarrow$ nearest configuration in \mathcal{T} to q_{rand} according to distance ho
- \triangleright add new branch to tree from selected configuration
- 5: $\lambda \leftarrow \text{GENERATELOCALTRAJECTORY}(s_{\text{near}}, s_{\text{rand}})$
- 6: if IsSubTrajectoryValid($\lambda, 0, \text{step}$) then
- 7: $s_{\text{new}} \leftarrow \lambda(\texttt{step})$
- 8: add configuration $s_{\rm new}$ and edge $(s_{\rm near}, s_{\rm new})$ to ${\cal T}$

\triangleright check if a solution is found

- 9: if $\rho(s_{\text{new}}, s_{\text{goal}}) \approx 0$ then
- 10: return solution trajectory from root to s_{new}

$$\begin{split} &\checkmark \mathrm{STATESAMPLE}(): \text{ random values for state components} \\ &\checkmark \rho: S \times S \to \mathbb{R}^{\geq 0}: \text{ distance metric between states} \\ &\checkmark \mathrm{IsSubTrajectoryValid}(\lambda, 0, \mathtt{step}): \text{ incremental approach} \end{split}$$

 $\lambda \leftarrow \text{GenerateLocalTrajectory}(s_{\text{near}}, s_{\text{rand}})$

- will it not create the same two-boundary value problems as in PRM?
- is it necessary to connect to s_{rand} ?
- would it suffice to just come close to s_{rand} ?

3

イロト 不同 ト イヨト イヨト

Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from $s_{\rm near}$ to $s_{\rm rand}$ compute a trajectory that starts at $s_{\rm near}$ and extends toward $s_{\rm rand}$

Approach 1 – extend according to random control

- Sample random control u in U
- Integrate equations of motions when applying u to s_{near} for Δt units of time, i.e.,

$$\lambda \rightarrow s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u) dh$$

Approach 2 - find the best-out-of-many random controls

1 for
$$i = 1, ..., m$$
 do
1 $u_i \leftarrow \text{sample random control in } U$
2 $\lambda_i \rightarrow s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u_i) dh$
3 $d_i \leftarrow \rho(s_{\text{rand}}, \lambda_i(\Delta t))$

2 return λ_i with minimum d_i

[movie: Traj]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

Sampling-based Motion Planning with Physics-Based Simulations

Tree approaches require only the ability to simulate robot motions

- Physics engines can be used to simulate robot motions
- Physics engines provide greater simulation accuracy
- Physics engines can take into account friction, gravity, and interactions of the robot with objects in the evironment

[movie: PhysicsTricycle] [movie: PhysicsBug]

∃ → < ∃ →</p>