
Introduction to Robotics
Manipulation Planning

Erion Plaku

Department of Electrical Engineering and Computer Science
Catholic University of America

Problem Formulation

Given [movie: L-shape] [movie: industrial]

a description of the obstacles

a description of the robot manipulator

a description of the object to be manipulated

a description of the initial and desired placements for the object

compute a sequence of motions where the robot manipulator grasps the object in its
initial placement and places it in its desired placement while avoding collisions

Challenges

How to grasp the object? Is the grasp stable?

Does the solution require re-grasping? When should the robot manipulator release
the object and re-grasp it in a different configuration?

Erion Plaku (Robotics) 2

Problem Formulation

Given [movie: L-shape] [movie: industrial]

a description of the obstacles

a description of the robot manipulator

a description of the object to be manipulated

a description of the initial and desired placements for the object

compute a sequence of motions where the robot manipulator grasps the object in its
initial placement and places it in its desired placement while avoding collisions

Challenges

How to grasp the object? Is the grasp stable?

Does the solution require re-grasping? When should the robot manipulator release
the object and re-grasp it in a different configuration?

Erion Plaku (Robotics) 2

Observations

Solution path to manipulation-planning problem consists of a sequence of transfer
and transit paths

Transfer path is a subpath where the object is stably grasped and moved by the
robot

Transit path is a subpath where the object is left in a stable position while the
robot changes grasp

Erion Plaku (Robotics) 3

Manipulation Graph

Each node is a triple (qobj, g , qrob), where

qobj specifies a stable placement (position and orientation) of the object

g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

qrob is the configuration of the robot for which the robot tool is able to grasp the
object placed at qobj using the grasp g

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer path where the object is

grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit path where the object is

left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to (gj , q

j
rob)

Erion Plaku (Robotics) 4

Manipulation Graph

Each node is a triple (qobj, g , qrob), where

qobj specifies a stable placement (position and orientation) of the object

g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

qrob is the configuration of the robot for which the robot tool is able to grasp the
object placed at qobj using the grasp g

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer path where the object is

grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit path where the object is

left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to (gj , q

j
rob)

Erion Plaku (Robotics) 4

Manipulation Graph

Each node is a triple (qobj, g , qrob), where

qobj specifies a stable placement (position and orientation) of the object

g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

qrob is the configuration of the robot for which the robot tool is able to grasp the
object placed at qobj using the grasp g

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer path where the object is

grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit path where the object is

left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to (gj , q

j
rob)

Erion Plaku (Robotics) 4

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

Challenges with PRM Approach

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

Challenges with PRM Approach

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

Challenges with PRM Approach

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

Challenges with PRM Approach

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

Erion Plaku (Robotics) 5

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph

2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do

2: σ ← compute most probable path in the
manipulation graph

3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph

3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do

4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time

6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1

8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)

5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then

6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability

9: if prob(q′, q′′) 6= 1 then
10: run subdivision collision checking to

validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)

12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure

14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)

16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1−time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Erion Plaku (Robotics) 6

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Proposed Approach

Introduce concept of Workspace Goal Regions (WGRs)

WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Desired properties of a WGR
easy to describe
easy to sample
easy to define distance from robot configuration to WGR

[movie]

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Proposed Approach

Introduce concept of Workspace Goal Regions (WGRs)

WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Desired properties of a WGR
easy to describe
easy to sample
easy to define distance from robot configuration to WGR

[movie]

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Proposed Approach

Introduce concept of Workspace Goal Regions (WGRs)

WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Desired properties of a WGR
easy to describe
easy to sample
easy to define distance from robot configuration to WGR

[movie]

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Proposed Approach

Introduce concept of Workspace Goal Regions (WGRs)

WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Desired properties of a WGR
easy to describe
easy to sample
easy to define distance from robot configuration to WGR

[movie]

Erion Plaku (Robotics) 7

Workspace Goal Region (WGR)

Definition of WGR: a triple (T 0
w ,T

e
w ,B

w), where

T 0
w : reference transform of the WGR in world coordinates

T e
w : end-effector transform in the coordinates of w

Bw : bounds in the coordinates of w

Bw = [(xminxmax), (ymin, ymax), (zmin, zmax), (ψmin, ψmax), (θmin, θmax), (φmin, φmax)]

Erion Plaku (Robotics) 8

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)



take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

use forward kinematics to get the position
of the end effector at this configuration T 0

s

get the pose of the grasp location in world
coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert this pose from world coordinates
to the coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from the origin of the w frame

dw =


tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)


take into account the bounds Bw to get
the 6× 1 displacement vector ∆x from dw

∆xi =


dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

d(qs ,WGR) = ||∆x ||

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

dw
sample ← sample a random value between each of the bounds defined by Bw with

uniform probability

convert dw
sample into a transformation matrix Tw

sample

apply the end-effector transformation to convert Tw
sample into world coordinates, i.e.,

T 0
wT

w
sampleT

w
e

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

dw
sample ← sample a random value between each of the bounds defined by Bw with

uniform probability

convert dw
sample into a transformation matrix Tw

sample

apply the end-effector transformation to convert Tw
sample into world coordinates, i.e.,

T 0
wT

w
sampleT

w
e

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

dw
sample ← sample a random value between each of the bounds defined by Bw with

uniform probability

convert dw
sample into a transformation matrix Tw

sample

apply the end-effector transformation to convert Tw
sample into world coordinates, i.e.,

T 0
wT

w
sampleT

w
e

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

dw
sample ← sample a random value between each of the bounds defined by Bw with

uniform probability

convert dw
sample into a transformation matrix Tw

sample

apply the end-effector transformation to convert Tw
sample into world coordinates, i.e.,

T 0
wT

w
sampleT

w
e

Erion Plaku (Robotics) 10

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)

2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do

3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)

4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)

6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(q); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

Erion Plaku (Robotics) 11

