Introduction to Robotics

Manipulation Planning

Erion Plaku

Department of Electrical Engineering and Computer Science
Catholic University of America

Problem Formulation

Given [movie: L-shape] [movie: industrial]
m a description of the obstacles
m a description of the robot manipulator
m a description of the object to be manipulated
m a description of the initial and desired placements for the object

compute a sequence of motions where the robot manipulator grasps the object in its
initial placement and places it in its desired placement while avoding collisions

Erion Plaku (Robotics) 2

Problem Formulation

Given [movie: L-shape] [movie: industrial]
m a description of the obstacles
m a description of the robot manipulator
m a description of the object to be manipulated
m a description of the initial and desired placements for the object
compute a sequence of motions where the robot manipulator grasps the object in its
initial placement and places it in its desired placement while avoding collisions
Challenges
m How to grasp the object? Is the grasp stable?

m Does the solution require re-grasping? When should the robot manipulator release
the object and re-grasp it in a different configuration?

Erion Plaku (Robotics) 2

m Solution path to manipulation-planning problem consists of a sequence of transfer
and transit paths

m Transfer path is a subpath where the object is stably grasped and moved by the
robot

m Transit path is a subpath where the object is left in a stable position while the
robot changes grasp

Erion Plaku (Robotics)

Manipulation Graph

Each node is a triple (gobj, &, Grob), Where
B ob; specifies a stable placement (position and orientation) of the object

m g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

® grob is the configuration of the robot for which the robot tool is able to grasp the
object placed at gob; using the grasp g

Erion Plaku (Robotics)

Manipulation Graph

Each node is a triple (gobj, &, Grob), Where
B ob; specifies a stable placement (position and orientation) of the object
m g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object
® grob is the configuration of the robot for which the robot tool is able to grasp the
object placed at gob; using the grasp g

An edge ((q(’;bj,g, Giob)s (qébj,g, q{,ob)> indicates a tranfer path where the object is
grasped according to g and the robot moves with the object from configuration

(ngj: qiob) to (Qéij qﬁob)

Erion Plaku (Robotics)

Manipulation Graph

Each node is a triple (gobj, &, Grob), Where
B ob; specifies a stable placement (position and orientation) of the object

m g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

® grob is the configuration of the robot for which the robot tool is able to grasp the
object placed at gob; using the grasp g

An edge ((q(’;bj,g, Giob)s (qébj,g, q{,ob)> indicates a tranfer path where the object is
grasped according to g and the robot moves with the object from configuration
(9obj> Grob) to (%ij Top)

An edge ((QOijgia Q£ol>), (Qobj»gjv q;.ob)) indicates a transit path where the object is
left at a stable placement gop; while the robot changes grasp from (g', gi.p) to (g, 4.,,)

Erion Plaku (Robotics) 4

Computing the Manipulation Graph

PRM Approach

m Node Generation:) o
for i =1,..., N do sample a node (q).;, 8", @rob)

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

m Node Generation:) o
for i =1,..., N do sample a node (q).;, 8", @rob)

m Edge Generation:
connect neighboring nodes ((abu;, &', alon): (@', o))

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

m Node Generation:) o
for i =1,..., N do sample a node (q).;, 8", @rob)

m Edge Generation:
connect neighboring nodes ((ngygi’ Grob); (q{)bj,gj, qiab))
Challenges with PRM Approach
m Each edge generation gives rise to a path-planning problem
m Must verify edge validity before adding it to manipulation graph

m Too many edge verifications (since graph could have large number of nodes)

Erion Plaku (Robotics) 5

Computing the Manipulation Graph

PRM Approach

m Node Generation:) o
for i =1,..., N do sample a node (q).;, 8", @rob)

m Edge Generation:
connect neighboring nodes ((ngygi’ Grob); (q{)bj,gj, qiab))
Challenges with PRM Approach
m Each edge generation gives rise to a path-planning problem
m Must verify edge validity before adding it to manipulation graph

m Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea
m Probabilistic edges instead of deterministic edges
m Use a probabilistic path planner to compute edge connections

m Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

Erion Plaku (Robotics) 5

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph

1: User supplies nodes (q(‘;bj,g", qiob),
i=1,...,N of the manipulation graph

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph

1: User supplies nodes (q(‘;bj,g", qiob),
i=1,...,N of the manipulation graph
2: for each pair of nodes

e=((ap; 8", Glop)s (a5 &5 aly,) do

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),

i=1,...,N of the manipulation graph
2: for each pair of nodes

e=((a)p;-&" alop): (Thy;- &7 aly,) doO
3: if g/ = g/ then add e as a transfer edge
and set prob(e) < 0.9999

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Erion Plaku (Robotics)

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do

Erion Plaku (Robotics)

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

Erion Plaku (Robotics)

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph
3: for each edge e € o do

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph

1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
e= (a8 Grop) (T8 A1) doO
3: if g/ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébi = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph
3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]
Manipulation Graph
1: User supplies nodes (q(‘;bj,g", qiob),
i=1,..., N of the manipulation graph
2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if qébj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

8: else 1 time(e)

9: prob(e) < Soritme

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add an edge(q, ¢’) to all previous samples

e = (G & Tl (g &) do 4 Probla) = P

3: if g/ = g/ then add e as a transfer edge
and set prob(e) < 0.9999

4. if q(’l)bj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

8: else 1 time(e)

9: prob(e) < Soritme

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add an edge(q, ¢’) to all previous samples

4 prob(q,q') < P*(I)

e = ((9ob;:8" Tron): (T & A1) do 5. if mode = “QUERY" then

3: if g/ = g/ then add e as a transfer edge
and set prob(e) < 0.9999

4. if q(’l)bj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

8: else 1 time(e)

9: prob(e) < Soritme

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge

add an edge(q, ¢’) to all previous samples
prob(q, q’) « P*(1)

if mode = "QUERY” then
¢ < compute most probable path in G,

2: for each pair of nodes)
€= ((qi)bj’gi’ ion)s (‘Té)ijgj’ o) do
3: if g’ = g/ then add e as a transfer edge
and set prob(e) < 0.9999
4. if q(’l)bj = q{)bj then add e as a transit
edge and set prob(e) < 0.9999

S

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

8: else 1 time(e)

9: prob(e) < Soritme

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add an edge(q, ¢’) to all previous samples
e=((q..g q)(qd .., ¢)do 4. prob(q,q') + P*(/)
_ ((f’obJ N Gron): (Tons> & o) 5. if mode — “QUERY” then
3: if g’ = g/ then add e as a transfer edge 6: & <« compute most probable path in Ge
.andlset prob(e) < 0.9999 . 7. repeat
4. if q(’)bj = q{)bj then add e as a transit 8: (q’,q") + edge in ¢ with lowest
edge and set prob(e) < 0.9999 probability

Query Stage
1: while no solution found do
2: 0 < compute most probable path in the
manipulation graph

3: for each edge e € o do

4: if prob(e) # 1 then

5: run low-level fuzzy PRM on e for a
short period of time

6: if success then

7 prob(e) + 1

8: else 1 time(e)

9: prob(e) < Soritme

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add :(an etﬂ/§e(q7 q/z ;o all previous samples
_ iyl gl i e g 4: prob(q,q’) <+ P*(I
7 ((f’obJ’f +9ro): (4o &7: o) do 5. if mode = “QUERY” then
3: if g’ = g/ then add e as a transfer edge 6: ¢ < compute most probable path in G,
andlset prob(e) <+ 0.9999 7. repeat
4: if q(’)b] = q{)b) then add e as a transit 8: (q/7 q”) <« edge in ¢ with lowest
edge and set prob(e) < 0.9999 probability
9: if prob(q’,q"") # 1 then
Query Stage 10: run subdivision collision checking to
1: while no solution found do validate (q’, g'’) at resolution
2: 0 < compute most probable path in the 2€q’,q")
manipulation graph 11: increment 4(q’, q")
3: for each edge e € o do
4: if prob(e) # 1 then
5: run low-level fuzzy PRM on e for a
short period of time
6: if success then
7 prob(e) + 1
8: else)
9: prob(e) + lt;t;',i'm

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add :(an etﬂ/§e(q7 q/z ;o all previous samples
_ iyl gl i e g 4: prob(q,q’) <+ P*(I
7 ((,q"bJ’jg +Fron): (9o 8, 1) do 5: if mode = “QUERY” then
3: if g’ = g/ then add e as a transfer edge 6: ¢ < compute most probable path in Ge
andlset prob(e) <~ 0.9999 7. repeat
4 if g/, = q/;; then add e as a transit 8: (q',q") < edge in ¢ with lowest
edge and set prob(e) < 0.9999 probability
9: if prob(q’,q"") # 1 then
Query Stage 10: run subdivision collision checking to
1: while no solution found do validate (q’, g'’) at resolution
2. o+ compute most probable path in the oq’,q")
manipulation graph 11: increment 4(q’, q")
3: for each edge e € o do 12: if collision then
4: if prob(e) # 1 then 13: remove (q’, q"’) from G and
5: run low-level fuzzy PRM on e for a return failure
short period of time
6: if success then
7 prob(e) + 1
8: else)
9: prob(e) + lt;t;',i'm

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample g to graph Ge
2: for each pair of nodes 3: add :(an etﬂ/§e(q7 q/z ;o all previous samples
_ iyl gl i e g 4: prob(q,q’) <+ P*(I
°° ((,q"bJ’jg +Trob): (G2 £ drop) do 5: if mode = “QUERY" then
3: if g’ = g/ then add e as a transfer edge 6: ¢« compute most probable path in Ge
andlset prob(e) <~ 0.9999 7. repeat
4 if gy, = q{)bj then add e as a transit 3: (q',q") < edge in ¢ with lowest
edge and set prob(e) < 0.9999 probability
9: if prob(q’,q"") # 1 then
Query Stage 10: run subdivision collision checking to
1: while no solution found do validate (q’, g'’) at resolution
2. o+ compute most probable path in the oq’,q")
manipulation graph 11: increment 4(q’, q")
3: for each edge e € o do 12: if collision then
4: if prob(e) # 1 then 13: remove (q’, q"’) from G and
5: run low-level fuzzy PRM on e for a return failure
short period of time 14: else
6: if success then 15: update prob(q’, q"") based on
7: prob(e) + 1 collision resolution ¢(q’, q"")
8: else)
9: prob(e) + lt;t;',i'm

Erion Plaku (Robotics) 6

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph Low-Level Fuzzy PRM
1: User supplies nodes (q(‘;bj,g", qiob), 1: if mode = “CONSTRUCTION" then
i=1,...,N of the manipulation graph 2: add a new sample q to graph Ge
2: for each pair of nodes 3: add :(an etﬂ/§e(q7 q/z ;o all previous samples
_ iyl gl i e g 4: prob(q,q’) <+ P*(I
°° ((,q"bJ’jg +Trob): (G2 £ drop) do 5: if mode = “QUERY" then
3: if g’ = g/ then add e as a transfer edge 6: ¢« compute most probable path in Ge
andlset prob(e) < 0.9999 7. repeat
4 if gy, = q{)bj then add e as a transit 3: (q',q") < edge in ¢ with lowest
edge and set prob(e) < 0.9999 probability
9: if prob(q’,q"") # 1 then
Query Stage 10: run subdivision collision checking to
1: while no solution found do validate (q’, g'’) at resolution
2. o+ compute most probable path in the oq’,q")
manipulation graph 11: increment 4(q’, q")
3: for each edge e € o do 12: if collision then
4: if prob(e) # 1 then 13: remove (q’, q"’) from G and
5: run low-level fuzzy PRM on e for a return failure
short period of time 14: else
6: if success then 15: update prob(q’, q"") based on
7 prob(e) + 1 collision resolution £(q’, q"")
8: else) 16: until all edges in ¢ have prob 1
9: prob(e) + lt;tgli’m 17: return success

Erion Plaku (Robotics) 6

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

m Manipulation planners often require specification of a set of stable grasp
configurations

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]
m Manipulation planners often require specification of a set of stable grasp
configurations
m This forces the planner to use only these configurations as goals
m If the chosen goal configurations are unreachable, the planner will fail

m Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]
m Manipulation planners often require specification of a set of stable grasp
configurations
m This forces the planner to use only these configurations as goals
m If the chosen goal configurations are unreachable, the planner will fail
m Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations
Proposed Approach
m Introduce concept of Workspace Goal Regions (WGRs)

m WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Erion Plaku (Robotics) 7

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

m Manipulation planners often require specification of a set of stable grasp
configurations

m This forces the planner to use only these configurations as goals

m If the chosen goal configurations are unreachable, the planner will fail

m Even when some of these goal configurations are reachable, it may take the planner
a long time to find solutions to these goal configurations

Proposed Approach
m Introduce concept of Workspace Goal Regions (WGRs)
m WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner
m Desired properties of a WGR

m easy to describe
m easy to sample
m easy to define distance from robot configuration to WGR

[movie]

Erion Plaku (Robotics)

Workspace Goal Region (WGR)

Definition of WGR: a triple (TS, TS, B*), where
m T reference transform of the WGR in world coordinates
m T,: end-effector transform in the coordinates of w
m B": bounds in the coordinates of w

BW = [(XminXmax)7 (ymim ymax), (zmin, zmax), (wminy ¢max)7 (emim gmax)7 (¢min7 Qbmax)]

Erion Plaku (Robotics) 8

Using WGRs in Sampling-Based Path Planning

Distance to WGRs: d(qs, WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position
of the end effector at this configuration T2

Distance to WGRs: d(qs, WGR)

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position
of the end effector at this configuration T2

m get the pose of the grasp location in world

coordinates Distance to WGRs: d(qs, WGR)
To =TT}

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position
of the end effector at this configuration T2

m get the pose of the grasp location in world

coordinates Distance to WGRs: d(qs, WGR)
To =TT
m convert this pose from world coordinates
to the coordinates of w

= (T T

s/

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position
of the end effector at this configuration T2

m get the pose of the grasp location in world

coordinates Distance to WGRs: d(qs, WGR)
T =TUTY)”
m convert this pose from world coordinates
to the coordinates of w
2= (1)
m convert TY into a 6 X 1 displacement
vector from the origin of the w frame
tW
arctanZ(R"‘,’ RY)
dv = S3° S33
= 7arcsm(RW)

arctan2(RY ; 7F\’W)
G

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position
of the end effector at this configuration T2

m get the pose of the grasp location in world

coordinates Distance to WGRs: d(qs, WGR)
TO =TT¥)”

m convert this pose from world coordinates
to the coordinates of w
= (T T

m convert TY into a 6 X 1 displacement
vector from the origin of the w frame

tW
arctanZ(R"‘,’ RY)
dv = S S33
= 7arcsm(RW)

arctan2(RY ; 7F\’W)
G

m take into account the bounds B" to get
the 6 x 1 displacement vector Ax from d"

d¥ — B ifd¥ <B
Ax; =qd¥ —BY, ifd"> B/,
0 otherwise

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

m use forward kinematics to get the position

of the end effector at this configuration T2 Distance to WGRs: d(gs, WGR)
: s
m get the pose of the grasp location in world
coordinates

TS = T(TY)™

m convert this pose from world coordinates
to the coordinates of w
= (T T

m convert TY into a 6 X 1 displacement
vector from the origin of the w frame

tW
arctanZ(R"‘,’ RY)
dv = S S33
= 7arcsm(RW)

arctan2(RY ; 7F\’W)
G

m take into account the bounds B" to get
the 6 x 1 displacement vector Ax from d"

d¥ — BY if d¥ < BY d(gs, WGR) = || Ax|
Ax; =4 d¥ —BY, ifd¥>BY,
0 otherwise

Erion Plaku (Robotics) 9

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

m dY <+ sample a random value between each of the bounds defined by B" with

ample

uniform probability

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

m dY <+ sample a random value between each of the bounds defined by B" with

ample

uniform probability

m convert dg,,p1e iNto a transformation matrix Ty, e

Erion Plaku (Robotics) 10

Using WGRs in Sampling-Based Path Planning

Sampling from a WGR

sample <— Sample a random value between each of the bounds defined by B" with
uniform probability

m convert dg,,p1e iNto a transformation matrix Ty, e

m apply the end-effector transformation to convert Tj; . into world coordinates, i.e.,

0 +w w
Tw sample Te

Erion Plaku (Robotics) 10

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)

2: while TIMEREMAINING() do

3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4 if Tgour.size() = 0 or rand(0,1) < Psample then
5 ADDIKSOLUTIONS(Tgoat)

Erion Plaku (Robotics)

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

T,.IN1T(q); Tp.INIT(NULL)
while TIMEREMAINING() do
Tgoal < GETBACKWARDTREE(Ta, Tp)
if Tgoai.size() =0 or rand(0,1) < Psample then
ADDIKSOLUTIONS(Tgoat)
else
Grand < RANDCONFIG()

S

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4: if Tgonr.size() = 0 or rand(0,1) < Psample then
5: ADDIKSOLUTIONS(Tgoal)

6: else

& Grand < RANDCONFIG()

8: Ghcar < NEARESTNEIGHBOR(T2, Grand)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4: if Tgonr.size() = 0 or rand(0,1) < Psample then
5: ADDIKSOLUTIONS(Tgoa1)

6: else

& Grand < RANDCONFIG()

8: Ghcar < NEARESTNEIGHBOR(T2, Grand)

9: qfcachcd — EXTENDTREE(Ta: qralearv qrand)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4 if Tgour.size() = 0 or rand(0,1) < Psample then
5: ADDIKSOLUTIONS(Tgoa1)
6: else
& Grand < RANDCONFIG()
8: Ghcar < NEARESTNEIGHBOR(T2, Grand)
9 qfcachcd — EXTENDTREE(Ta: qralearv qrand)
10: Gl oar — NEARESTNEIGHBOR(T, Grand)
b b
11: Qreached < EXTENDTREE(Tb7 Qnear qrand)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4 if Tgour.size() = 0 or rand(0,1) < Psample then
5: ADDIKSOLUTIONS(Tgoa1)
6: else
& Grand < RANDCONFIG()
8: Ghcar < NEARESTNEIGHBOR(T2, Grand)
9 qfcachcd — EXTENDTREE(Ta: qralearv qrand)
10: Gl oar — NEARESTNEIGHBOR(T, Grand)
b b

11: Qreached < EXTENDTREE(Tb7 Qnear qrand)

H b
12: if qraeached = Qreached then b
13: return EXTRACTPATH(Ty, ¢ acheds Tbs Greachod)

Erion Plaku (Robotics) 11

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1. T,.IN1T(q); Tp.INIT(NULL)
2: while TIMEREMAINING() do
3: Tgoal < GETBACKWARDTREE(Ta, Tp)

4: if Tgonr.size() = 0 or rand(0,1) < Psample then
5: ADDIKSOLUTIONS(Tgoa1)
6: else
& Grand < RANDCONFIG()
8: Ghcar < NEARESTNEIGHBOR(T2, Grand)
9 qfcachcd — EXTENDTREE(Ta: qralearv qrand)
10: Gl oar — NEARESTNEIGHBOR(T, Grand)
b b

11: Qreached < EXTENDTREE(Tb7 Qnear qrand)

H b
12: if qraeached = Qreached then b
13: return EXTRACTPATH(Ty, ¢ acheds Tbs Greachod)
14: else
15: SWAP(T,, Tp)

Erion Plaku (Robotics) 11

